L GBROWN
Lidskii’s Theorem in the type I1
case

ABSTRACT

Iidskii's Theorem states that the trace of a trace class operator is the
sum of 1ts eigenvalues, counting multiplicity. We generalize this to
operators T e Ll(NLT), where M is a W*~a1gebra and T a faithful,
normal, semi-finite trace on M. There is a unigque measure u on o{T)\{0}
such that 7(log|l - 2zT|) = [ log|l - zw|du(w) for all z. u may be
thought of as gilving the multiplicity of elements in the spectrum of T.

For all 0<p<w, [ |w|Pau(w) < w(|T|®), and (T) = [ wau(w). Tne

proof uses representation theory for subharmonic functions.

0. INTRODUCTION

Throughout the paper M and < will be as stated in the abstract. For
TeMn Ll(M,T), let u(z) = 1(logll - 2T|) (the log of the Fuglede-
Kadison determinant of 1 - zT). The main elements of the proof of the
results stated in the abstract are:

(1) Show u is subharmonic.

(ii) Show g%- f%ﬂ u(reie)de < fc(log+ r|T|), Wt > 0. The inequality
(ii) is the main result needed for the validity of a represenﬁation
theorem for u. (ii) also implies [ o(|w|)au(w) < t(o(|T|)) for all
increasing functions ¢ such that ©{(0) = 0 and w(et) is convex.

(i), (i1) and the main theorem, 3.13, are proved in §3. The results

can be generalized, by using the usual convergence factors, to the case
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where T ¢ M N LP(M,T) for any 0 < p <, and it is actually this case
which is considered in §3. Sections 1 and o contain preliminaries on

type II operator theory and subharmonic functions. Section 4 gives some
additional results, including that if Tl,T2 eM and T.T ,T T, € LP(M,T),

172”7271
then T1T2 and T2Tl have the same spectral multiplicity measures. An
appendix deals with unbounded T.
We are grateful to D. Drasin and A, Weitsman for helpful discussions

on subharmonic functions.

1. PRELIMINARIES ON s-NUMBERS AND THE FUGLEDE-KADISON DETERMINANT

The Fuglede-Kadison determinant was treated in (Fuglede and Kadison, 1952)
for M a finite factor. It is known (see for example (Fack, 1982, 1983) and
(Grothendieck, 1955)) that it can be generalized, but we have not found a
reference that gives everything we need. We therefore give a fairly self-
contained treatment, adequate for present purposes. Determinant theory
for unbounded operators is treated in the appendix.

For p ¢ (0,») we denote by Lp,w the space M N 1P(M, 1), with the
topology defined by || Hp,w = | Hp + || |l We will speak of the L

by
topology on the coset 1 + L also, The closure of L in the
Py D,®

operator norms I I, does not depend on P and will be denoted KTe
If M is not a factor, KT may be smaller than the usual ildeal of
generalized compact operators.

The s-numbers of T € M were defined in (Fack, 1982). There is a
non-increasing function sg : (0,#) - [0,0) such that x> 0,
| {t ST(t) > x}| = T(E(X w)(\Tl)), where | | denotes Lebesgue measure

2

and EF denotes the spectral projection corresponding to the Borel set

¥, 5. vanishes at o if and only if T ¢ K&, and in this case

T
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(5 (1T1)) = [{6 2 ap(6) < P}, WP C (0p0). Tmue [ (s (8))at = (e(|7]))
for non-negative Borel f with f£(0) = 0, The classical non-increasing
rearrangement of a measureable function on a &-finite measure space is
a special case. On a few occasions below we will claim certain points
follow by spectral dominance arguments. The basic technique being referred
to goes back to von Neumann and is well known. Differing formal definitions
of spectral dominance were given, for example, in (Akemann, Anderson, and
Pedersen, 1982; page 170) and (Brown and Kosaki; Definition 2, see also
Lemmas 3 and 4 and Remark 5). The.definition in (Brown and Kosaki) is
directly related to s-numbers.

For A el 4+ Ii,m, the determinant of A is denoted A(A) and defined
by
(1) log A(A) = t(log |A]).
(1) requires interpretation. If A has a non-trivial null-space
(considering M as an algebra of operators on some Hilbert space H),
we set log A(A) = «w, A(A) = 0. Otherwise log|A| 1is an umbounded

T-leasureable operator affiliated with M and log+}A§ e L o ki
2

e
togla] e Ll(M,T), the meaning of (1) is clear; if not, set
log A(A) = v(log|Al) = = (cf. (Brown and Kosaki; Definition 7)). For
(1) < ®, log A(A) = fg(l) log s,(t)dt. Note that A has index O,
since A -1 e K . Hence A= U|A| for some unitary U e M, and
A(A) = A(A*>o

1.1 Lemma. Iet £ %be a differentisble function into 1+ Li,m and
Log be a single-valued branch of log defined in a neighborhood of ﬁ(f(to))
such that Log(l) = 0. Then in some neighborhood‘of o Log(f(t)) is
differentiable inmto L), and é% (Log(£(t))) = 1‘(é%-log(f(t))) =

T(f(t)'lf’(t)).




1.1l is well known and is proved by standard manipulation of resolvents.
Note that the condition on o(f(to)) is satisfied if f(to) is invertible

and positive,

1.2 Proposition. log A(es) = Re(7(8)) for S e Ly e
3

Proof. In view of the obvious fact, A(A)2 = A(iA]Q), it suffices

%
to calculate a% q;(log(ets ets)) = oRe{7(8)).

1.3 Temma. A(AB) = A(A)A(B) for invertible A,B e 1 + L e
3

Proof, Since A = UJA|, U unitary, and &(-) = &(|<]), we may
* *
replace A by |A]. Similarly, using B = |B |V and A(c) = &),
we replace B by ]B*] Thus we now assume A,B > 0, Now since

ABBY = A(]4B|?) = A(BAPB), it is sufficient to show
(2) 1(log(BAB)) = ov(log B) + 1(log A), YA,B as above.

*
To prove (2), write A = &® for 5=5"¢ L, , and calculate the deri-
3

vative of both sides of (2) with A replaced by etS,

1.4 Proposition. log & is real analytic in the L, , topology (in
2

particular continuous) when restricted to invertible elements of 1 + L1 w?
2

Also if A(:) is an L, ,-bolomorphic function of a complex variable
3

with invertible values in 1 + L, ,» then log A{A(+)) is harmonic,
3

Proof. 1In view of 1.3 it is sufficient to consider both parts only in
the peighborhood of 1. But for ||A - 1] <1, it follows from 1.2 that

n-1
log A(A) = Re z:‘z L‘—lln——— o((a - 1)M).

1.5 Remark. |A| > |B| = A(A) > A(B). This follows from the operstor

monotonicity of log, but it also follows very easily just from the
L
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monotonicity of log, since log!Bl is spectrally dominated by 1og‘Ai

in the sense of (Akemann, Anderson, and Pedersen, 1982).

~topology.

1.6 Proposition. log & 1is upper semicontinuous in the Ll -
. 3

L
2
|4]2 + &|T|? is invertible, since it is |(1 - 82, (14 s)l/QTlg + 5,

Proof. Tor >0 and T=4A-1, set f£(4) =5 log allal? + glTl?) -

where 1 -8 = (1 + g)—l. Hence fg is continuous. Further fg > log A
and fE(A) is non-decreasing in & by 1.5. Thus to complete the proof

we need only observe that log A(A) = 1im £ (A). An elementary way to
g-0r © 5

Choose any invertible B > |A|® such that

see this is as follows:
B-1elL . Then since %:mg AB + g|T|?) > £_(a) end

2
1im %— log A(B + ¢|T]?) = log A(El/z) (by 1.4), lim fE(A) < log A(B

-0+
But it is easy to see that

1/2)'
- O

inf{log A(Bl/g) : B as above} = log A(A).

We need only allow B +to run through suitable functions of IA!.

1.7 Proposition. A(AB) = A(A)A(B), VA,Be 1+ L e
3

Proof. We reduce to the case A,B > 0 as 1n the proof of 1.3. We
then complete the proof by reducing to the case where A and B are
invertible. ILet £ (x) = max (x, %) . Since A(ABY = a(]aB|?) = A(BA®B),
we see that z_\.(fn(A)B) > A(AB). Thus 1.6 implies that /_\(fn(A)B) - O(AB).
Similarly, A(fn(A)) ~ &{A). Thus we are reduced to the case A in-
vertible. Since also A(AB)2 = A(I(AB)*‘Z) = A(AB2A), a similar argument

gives a reduction to the case B invertible.

1.8 Proposition. If P 1is a projection in M such that AP = PAP,

then A(A) = APMP(PAP) . A(lnP)M(l_m((l - P)A(L - P)).

Remark.

In informal notation this says




A((il r:lg» = A(Al)A(AZ).

2

Proof, Since

(52 -C 6 20 )

in view of 1.7 it is sufficient to observe

) ol Dol )

1.9 Proposition. If A e 1 + Ll o and B is invertible in M, then
3

A(BAB™LY = A(a).

Proof. The result follows easily if A is a finite product of exponen-
tisls as in l.0. If A is invertible, A is the product of two such
exponentials by the polar decomposition. For general A choose invertible
A - A in ‘the le)oo topology such that A(An) - A(A) (for example let
A = Ufn(\A! ), £ as in the proof of 1.7). Then since BAnB'l T
in the Ll,w~topology, 1.6 implies A(BAB"l) > A(A). By symmetry, also

ala) > A(BAB"l)°

i

The next result concerns At(T) fg log sT(x)dx. We note that if E
is a projection in M and T(E) = t <, then log AEME(EiT\E) < At(T)'
This can be seen from the fact that EETXE is spectrally dominated by

|T|. If M is non-atomic, A (T) = sup{log AEME(E\T\E) : 7(BE) = t};

but we do not need this.
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ple let
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A%(T).

2d by

1.10 Proposition. At(Tsz) < At(Tl) + A%(T2), \aTl,Tg e M,

t e (0,0).

Proof. We first show that if E 1is a projection with (E) = t <,

then
(3) log Mg (BT, T, 1E) < A(T)) + 4, (T,)-

Write lTlmgi = UI,T, for flull = 1. If the left support projection of

EUTl or the right support projection of T2E is % E, the left side

= =0, Otherwise, let El and EE be the right support projection of

EUTl and the left support projection of T2E, We can find Vi such
that V.V. = B, and V.V, = E. log (ElT.T |E) =
i'i i Sid AEME 12
* % *

= log AEME(EUT1V1V1V2V2T2E) = log AEME(EUTlVl) + log AEME(V1V2) +

* 3 s
+ log AEME(VQTQE) S'At(Tl) + 0+ At(Tg)’ since lEUTlVll is spectrally

*

dominated by lTll, HViVQH <1, and \VéTEEl is spectrally dominated
2‘“
Now for arbitrary +t e (0,0), there is a smallest x > O such that

by |T

ﬂy%MU%%U)gt MtE1=%&MH%%U,%=EBw%W§JL

. _ ] _ . <
and b, T(Ei) If t, or tg t, we are done by (3). If t, <t

and x = 0, the left side of 1.10 <t < tg < o

-0

]

. Otherwise, if tl

(which will always be so if T.T_ ¢ K =x on (tl,tg). Then

12 T>’ Sp_m
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1.10 follows from (3) for E, or E2 depending on whether x < s (t)sT (+)

1 2
or x Z_sTl(t)sT (t). In the remaining cases, STlT =x on (tl,m).
1.10 still follows from (3) for E, if x<sy (t)sT (t). If
X>STthﬁ;tL then Wy e @Tﬁth(thL we can find tf e (t,»)
and a projection Eé such that T(Eé) = té and El < Eé < E(yaw)(\Tngk).
Then (3) for B, implies Atl(\Tng‘) #log ye (t - t)) SA(T) + A(T,)

7




We now let v - x.

1.11 Proposition, Iet 5158, (0,2) = [0,0) be non-increasing,

and assume fé 1og+si(x)dx < w, Then the following are equivalent:

(1) J§ log s (x)ax < [{ 10g 5, (x)ax, Wt e (0,).
(i1) f(g log+(rsl(x))dx < fog log+(rs2(x))dx, r > 0.
(1ii) fg cp(sl(x))dx < fg cp(sg(x))dx, YVt e (0,], WV non-decreasing

functions ¢ on [0,0) such that ©(0) = 0 and o(e’) is convex.

Proof. The hypothesis implies fg 1og+(rsi(x))dx <o, Vte (0,0),
r> 0.
(i) = (4i): TNote that fc; 1og+(rsi(x))dx = sup{fg 1og(rsi(x))(ix :
t e (0,2)} = sup{t log r + fg' log Si(X)dX : 1t e (0,0).
> 8 s ° k3 — l
(ii) = (i): PFirst assume Sg(t) > 0, Then for r = NOK

/,

fesl

Log, (rs, (x) )ax gjl; log(rs, (x))ax

t

t
1og(rsl(x) Jax _<_f

0

o0 t
S-[o log+(rsg(x))dx =ﬁ) lOg(I'Se(X))dX,

11
which gives the result for +t. Since ft log s.(x)dx = 1im ft log s, (x)
0 i T 0 i
all that remains is to prove it impossible that sg(tl) = 0, Sl(tg) > 0,

and b, < t,. But this would contradict (ii), since “Wr> 1,

) t
log (rs_(x))dx > t_ log r +f 2 log 5. (x)dx =nd
0 + 1 - 2 0 1

o0 t
1
< .
/;) 1og+(rs2(x))dx <t logr +j(; log, sg(x)dx

(i1) = (d4i): If t <, we may change sl(x) and sg(x) to 0O




og si(x)dg

> 0,

for x> t, since (1) will remain true. Thus we are reduced to the case

t = o, Now if ¢ dis continuous at O, there are mnT$ such that each
¢, is a linear combination of functions 1og+(r=) with non-negative
coefficients. We then apply the monotone convergence theorem. To cover
the case where o is discontinuous at 0, we need only consider ¢(s) = 1
for s> 0 and ©(0) = 0. (iii) for this case was dealt with in the

proof of (ii) = (i).

(iii) = (4i) is trivial.

1.12 Corollary., WTe M, v as in 1.11, t(@(|7™)) < w(o(|T]™)).

We remark only that it is not necessary here to assume T ¢ K%, although

only that case will be used below.

1.13 Remark. We note for later use that (log|l + T|) < t(log(l + |T|)).
This can be proved by an easy spectral dominance argument or deduced from

the main result of {Akemann, Anderson, and Pedersen, 1982).

2, PRELIMINARIES ON SUBHARMONIC FUNCTIONS

Tet u be an upper semicontinuous function defined on an open set DCC
and teking values in [-»,0), u is called subharmonic if A e D, de>o0

such that

1 [e" 10
u(w) < = f u{w + re” )ae, Vo <r< g
Tt is usually also assumed that u is not identically - on any

connected component of D, In this case u is locally integrable (and

integrable on every circle), and Vgu, computed in the sense of distri-

butions, is a non-negative measure, finite on compact sets. Any




subharmonic function can be approximated from above, in the sense of
everywhere pointwise convergence, by o subharmonic functions; and of
course for smooth functions subharmonicity just means that the Laplacian,
calculated in the usual way, is non-negative. Two subharmonic functions
which agree almost everywhere must agree everywhere.

The measure Ho = £k~92u is called the Riesz measure of the subharmonic

27

function uw. If K 1s compact and

vK(z) = u/; loglz - w‘dpo(w), then v

is subharmonic and VQVK = 2ﬂuO|K, It follows that u = Vg + h, where h

is harmonic on the interior of X. In this local representation theorem

the kernel loglz - wt may be replaced by others such as log|l - %~ or
z 7 2@ 1 01
log| (1 - = )GXP< T+ ;§-+ R ;5:f>t’ in which case h changes.

(For the two alternate kernels given one could assume O % K or O ﬁ supp “O
for example.) The only bar to obtaining a global representation theorem,
using any of the above kernels, is the convergence of the (global) integral
for w away from z. In some global representation theorems one also
wants h = 0, which requires additional work of course.

In the results stated formally below we have tried to avoid generality
unnecessary for this paper. We do not know a precise reference for 2,23
but it is certainly close to results in the literature, and in any case
the proof is standard.

2.1 below is a special case of a result from (Hayman and Kennedy,

1976). (Put p =0 in (3.7.2), page 120.) For u smooth it is a simple

application of Green's Theorem.

2.1 Temma. Assume u is subharmonic on €, u is harmonic in a

10




neighborhcod of 0, and u(0) = 0. Iet p

be the Riesz measure of u.
T 0
d of Then
lacian, T 1 en i
= A > 0,
log T duo(w) > j; u(re™ )6, “Wr>0
rtions
2.2 Proposition. Let u, Mo beas in2.l. ILet pe (0,) be such
sharmonic that [ —l——l-‘-lg d“O(w) <w, and let k >p be an integer. Let
W
un(z) = Z;l:é u(p'z), where p is a primitive n'th root of 1. Assume
that u vanishes to order at least k at O and um(z) = max(un(z),O) =
o(]z]™) as z —-w, Wn > k. Then
‘here h
weoren u(z) = f1og|(L - Z)exp( 2% + - S 2 ap (w), Ve
! = & v/ FRLg T FE-T kT )Mot :
=l or
w
change Z k 4 4 k-lre
gE8. Proof. The integrand is O( - ) for = small and O(L—;} )
' ;{ Supp MO for % large. The first estimate and the hypothesis on HO imply nice
eorem, convergence of the integral for w away from z. Also the integrand is
. k
integral < clf—; , C>0, forall z, w. If v(z) is the integral, then by the
so facts recalled above, u = v + h, where h is harmonic. Since u and
v both vanish to order k at 0, h does also. Also v+(z) = o(iz\k)
rality R : s k
as z -»»., (To see this write v(z) = flwlSR + flwl>R’ where R 1is chosen
223 1 . .
s0 that jM>R M—Mk duo(w) is small. For the first integral, use the
case . k-1+e ” k
O( = ) estimate for =z >> R. For the second use the "< C = "
estimate. ) Since
2
simple

217 . 217 217

/; v(rele)de .—.j; v+(reie)d6 -j;) v_(reie) > v(0) = 0,

11




we see that f%ﬂ \v(rele)ldé = o(rk) as T - », Similarly,
f%ﬁ \un(rele)\de = o(z"), V> k; and the same holds for v (defined
similarly to un), gsince rk < * for r > 1. TNow any entire harmonic

~
function h has an expansion

o

o0
Z amizlm cos mo + Z bm{z\m sin mo,
m=0 m=1 -

where for m >0, a = —-}-Ia f%ﬂ E(reie Jeos mode and
e

_ 1 ome, 164 . DY L
b = - fo h(re " )sin m6a6., For m divisible by n, am(hn) = nam(h)
and bm(hn) = nbm(h)g u=v+h implies u =v +h) and hence

j%“ }hn(rele)lde = o(r®), as r -®, VYn>k, This implies a (h) =

bn<h) =0, Vn>k, Since h vanishes to order k at 0, h = 0O,

3. THE MAIN THEOREM

n 2
3.1 lemma, Let Aj,ecepA ,Bise.e5B € B(H) be such that I, ﬁAi} is

invertible. Then

n times

Proof. let A, = A (2] & 12)”1/2, and let KB ¢ BLH® +-» ® H)

i
be the operators whose components are Al’“"An and Bl’°'°’Bn' Then

o — %
AA=1 and hence AA <1, Therefore

[ — L *
(BE)(AB) =B (AA )B<BB, as desired,

3.2 Lemma. Let Al’”"An be holomorphic functions of a complex

variable, relative to the topology of Ll - = MN Ll(M,T), such that
2

12




ined

nonic

Y H)

hen

at

n 2 . .
2’°°°’An € Ll,%“ I I, iAi(z}\ is invertible sz, then
n

108 A(Zl ]Ai(-)ﬁg) is subharmonic,

Proof., Let u(z) = log A(Zg {Ai(z)‘g) = 1(log Zi Ai(z)*Ai(z)). u is

¢ by 1.k, We calculate

2 T[@Ai(zm(z))"l@A3<Z>*A5(Z)>}

Eru s Lo (5 019) (3 g

e 1 1
- (é?lAi(z>12)—l(é?Ag(z>*Aj(z))<§?1Ak(z)!2>—l<§?Aﬁ(z>*A;(z§]

since [( )7's] = 7I( )"1/25( )‘1/2], in order to show VPu >0, it is

sufficlent to show
L5 2 (Saye @) 2 1Aj<z>12)'1(*;:Ak<z)*A;§<z>).

This last follows from 3.1 with B, = Ag(z)e

i
3.3 Theorem. Let Al,...,An be holomorphic functions of a complex

variable in the Iiaw—topology, such that A1 - 1, Az,n,.,An € Ll’m.

log A(ZE ‘Ai(o)lg) is subharmonic.

Then

Proof. Let u(z) = log A(z? {Ai(z)le), Let T(z) = A (z) -1, and

for e>0 let u(z) - log Ale]T(z)]° + = 14, (2)]2). u(z) | u(z) es

n
1

By 3.2 ua is subharmonic. Hence u is subharmonic. {The last

el 0, and ng(z)]e + O 3Ai(z)‘2 is invertible Wz by 1.5 and 1.6.

implication is standard and uses the definition of subharmonic and the

13




monotone convergence theorem. )

1
2

of 3.3 can be combined to give that log A is plurlisubharmonic on its

3.4 Remark. Since log A{A) = = log A(iAig), 1.1 and the case n = 1

entire domain, relative to the L1 w—topology. This means that it is upper
3

gsemicontinuous and becomes subharmonic when composed with a holomorphic
function.
We now fix T e Ib L = Mn IP(M,7), p e (0,2), and an intgger k > p.

3
Let u(z) = log A(gK(ZT)), where gk(w) = (1 - wiexp(w + o0 4 = % il Wk—l)

Since - 1 wvanishes to order k at 0, 3.4 implies that u is

&k
subharmonic. Moreover, gk(zT) is invertible whenever % ¢ o(T), and

in this region u is harmonic by 1.4, In particular u is harmonic

in a neighborhood of O and vanishes to order k at 0. Let “O be

the Riesz measure of u, and define p by du(w) = duo(%l), Then u

is a non-negative measure on C\{O}, finite on compact sets (not containing

0), and supported on o(TNf0}. If T is quasi-nilpotent,

are O,

3.5 Lemma. (i) un+(z) =o(|z|™) as z -, VA >k, where u, is

ag in 2.2,
1 2%

(i1) o . u(reia)dé < T(log+r\T| Y, NWr®o.

]

Proof. (i) Using 1.7, we see that un(z) log A(H?:é gk(pizT)) =

log A(L - znTn). Here we have used Z?:é piJ =0 for 0<j<k<mn,
where o 1s a primitive n'th root of 1. Since i ¢ L we may look

1,007
only at the case n=k= 1. Then by 1.13 u(z) = v(log|l - zT|) <

w(log(l + |z||T])) = | 1og(1l + |z|x)ar(x), where A(F) = T(EF(IT\), for

EF(\TE) the spectral projection corresponding to the Borel set F. Since

14
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Since

e TN0L7), [ X (x) <w, and A([g®)) <, Ve> o,
| log(l + rx)a(x) = o(r) as r -, To see this, write [ = fg - fz,
where g > 0 is chosen so that fg xd\(x) is small., TFor the first

integral, use log(l + rx) < rx. BEstimate the second integral by

1
10g(2r M ([e,%)) + fz log xd\(x), for =« E_E .
27 . 2% .
‘. 1 ie 1 i6
(11) §;~J/° u(re™ )ao = ey u (re™ )as
0 0
ox ,
1 n inb_n
= 5= . (log|1l - r e )as
1 ny,n 1 Nyl 0
< = w(log(L + 7[T7])) < T or(log(L + x7|T())

1
]

== ylalog(l + rxMa(x),

for n > k., Here we have used the arguments and notations of the proof
of (1) and 1.12 applied to ©(x) = log(l + r'x), but note that now we
have only | xpdl(x) <o, For x< % , write log{l + %) < (rx)n <

P . l/r n_n
(rx)*. Thus by the dominated convergence theorem fo 1og(l + rx )d(x) ~
0 as n -», For x> % , write log(l + r'x") < log(or™x") =

1 o nn log 2 1

log 2 + n log(rx). Thus = fl/f log(l + rx )an(x) < = k({]?,w)) +
f?/r log(rx)di(x). The first term - 0 as n - », and the second =

1) log+(rx)dk(x) = T(log+r\T\),

3.6 Theorem. If ¢ is a non-decreasing function on [0,o), such that
©(0) = 0 and m(et) is convex, then [ of|w|)dp(w) = [ ¢ (T%T) duo(w) <
w{o(|T])). Also fg @(sl(x))dx < fg m(sT(x))dx, where s, is the non-

increasing rearrangement of lwl relative to du{w).

15




Proof. 3.5 (ii) and 2.1 give 1.11 (ii), and 1.11 (iii) gives the desire

result.
3.7 Remark. 3.6 is anslogous to the Weyl inequalities (Weyl, 1949).

3.8 Corollary. (i) Yaq e (0,o), [ | Gap(w) < ”THE»
(11) u(o(T)\f0}) < 7(P), where P = the right support projection of

T = the support projection of ]T].

Proof. TFor (1) take o(x) = x%. For (ii) take o(0) = 0, o(x) = 1

for x> Q.
3.9 Theorem. u(z) = T(IOgng(zT)i) = log]gk(zw)\du(w), Yz e L.

Proof. We now have all the hypotheses of 2.2 and need only observe

that [ loglg, (zw)|au(w) = [ logle, (2 )lap (v).

3.10 Theorem., If f is homomorphic in a neighborhood of o(T) U {0}

and f wvanishes to order at least k at 0, then =(£(T)) = [ £(w)du(w).

Proof. We apply g% to both sides of the equation in 3.9 for % £ a(T)

.. 1 T k-2 k-1 1 W
obtaining > T{~ T T + T 4 see + 2 T l = —-f [_ i”:—2§'+ W cee 4

2
K- J-1 e . T ) W
z W ]du(w)e This simplifies to: = (jf:—zﬁ - | i—:—zw<du(w), for
z # 0. Thus we have the theorem for f(w) = = Y =, a ¢ o(T) u {0}. Now

write f(w) = wk%(w), and write T = lim %n’ uniformly in a neighborhood

of (T) u {0}, where each ?n is a finite linear combination of function

1
a -

—, a £ o(T) U f0}. Then 3.10 is obtained by passing to the limit

in

T<Tk%’n<cn)) - f F_(wan(w).

16
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3.11 Remark., For k=1 (T ¢ L o) and f(w) =w, we obtain the
9

desired generalization of Lidskii's theorem.

3,12 Theorem, If f is holomorphic in a neighborhood of o{T) U {0}

and f - 1 vanishes to order at least k at 0, then log A(£(T)) =

(log|f(T)|) = [ log|f(w)|du(w). (Here - is a possible value.)

Proof. Both sides of the equation are additive, so that if £ = F

1f29

and f . 3.9 covers the

2

case where T = gk(z-) for some z. f has only finitely many zeroces

it is sufficient to prove the result for fl
in o(T) U {0}, none of them at 0; and hence by removing finitely many
factors gk(z=) (with % € o(T)), we may assume T has no zeroes, Now
f has a single valued logarithm (in some neighborhood of o(T) U {0})
if and only if f is homotopic to 1 as a map of o{(T) U {0} 1o c\{o}.
The homotopy type of such maps is classified by elements of ﬁl(G(T) u {o1),
which is isomorphic to the free abelian group generated by the connected
components of C\(o(T) U {0}). Thus by removing 2 finite number of factors
of the form gk(zn)tl (with %-% o(T)), we reduce to the case f = exp(T), -
where T vanishes to order k at O. Then the left side of 3.12 is
Re ¢(F(T)) and the right side is Re [ T(w)dn(w). Thus 3.12 has been
deduced from 3.9 and 3.10.

We note that necessarily 0 ¢ ofT) if <{(l) = », We now consider the
case (1) <« and obtain more precise results. Since MC Ll(NLT)9
we assume k = 1. By 3.8 (ii), p(o(T)\{0}) < 7(1). We extend p to a
measure, still denoted p, on € (supported on a(T) U f0}) by setting

u({o})

1 -zw=z( %~- w). If =z is replaced by % , 3.9 gives <(loglz - T}) -

1

(1) - n(e(™N\{0}). For z £0, 1L -2l = z( % - T) and

log|z|(1) = [ leglz - wlau(w) - log|z|u(ae(T) U {0}), for =z # 0. Sinee

17




plo(T) u {0}) = 7(1), we have for z 40

(&) (loglz - T|) = J{&og]z - wldu(w).

Now both sides of (4) define subharmonic functions on all of €. (For
the left side 3.4 applies. For the right side standard facts recalled
in §¢ suffice.) Since these subharmonic functions agree almost everywhere,
they are equal; and (4) holds for all z. If O ¢ o(T), the left side
of (L) is harmonic near O; and this fact clearly implies that u has no
mass at 0. Thus p 1s always supported on o(T).

Now if 0 ¢ a(T), we see that the f in 3.10 or 3.12 may as well
be defined only in a neighborhood of o(T), since we could always extend
it to a(T) U {0} by making it O in a neighborhood of 0. We claim
that if 0 ¢ o(T), the hypothesis on f£(0) (recall that k = 1) may be
dropped from 3.10 and 3.12. For 3.10 we need only observe that (1) =
[ 1du(w). PFor 3.12 we need to consider the cases I = ¢ £ 0 (to cover the
case f(0) =c #£0) and f(w) = W' (to cover the case f£(0) = 0). The
first case follows from (1) = u(o(T)) and the second from (4) for z = O

The following summarizes the results proved:

*
3.13 Theorem. If T is a faithful, normal, semifinite trace on a W -
algebra M,T ¢ M N IP(M,7) for pe (O,), and k is an integer > D,

then there is a unique non-negative measure p on o{T)\{0} such that

log A(gk(zT)) = | log}gk(zw)\du(w), Vz € €, where gk(w) =
1 Wk_l}

k-1

for all non-decreasing ¢ such that o{0) = 0 and m(et) is convex.

(1 - w)exp(w + -21~w2 Foeee 4 . Purther [ o |w])au(w) < 7(o(|T|

Also

(5) w(e(m) = fr()aut),
18
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> D,

that

w(o(|T])

TeXs

for all f holomorphic in a neighborhood of o(T) such that f vanishes

to order at least k at 0 (if 0 e a(T)); and

(6) log A(£(T)) = flog\f(w)ldu(w),

for all f holomorphic in a neighborhood of o{T) such that £ -1
vanishes to order at least k at 0 (if 0 e o(T)).

If (1) <w®, there is also a unigue p on o(T) such that

1og Az - T) = [ loglz - wldu(w), Yz ¢ €; and this p agrees with the

and (5) and (6) hold

other on of(TN\fo}. For this u, n(o(T)) = (1),

for all f holomorphic in & neighborhood of a(T).

The only part of 3.13 not already proved 1s the unigueness of ud. But
this follows from the facts that for any u as in 3.13, du(%ﬂ) nust be
itself is the Riesz

the Riesz measure of u for the first p, and p

measure of log A(e - T) for the second .

3,14 Remark. Finally, we note that 1f k 1s replaced by k + 1, u

is changed by the addition of %-Re sz(Tk). Since this is harmonic, W

is not changed. We call p the spectral multiplicity measure of T

and denote it Ho when clarity demands the subscript. It will not be
necessary to establish separate notations for the two versions of

when (1) <o,

4, ADDITIONAL CONSIDERATIONS

In this section we prove some results intended to give further Justification
that u deserves to be called the spectral multiplicity measure of T,

We also give some suggestions for further work.

4,1 Theorem, and f

is holomorphic in a neighborhood

19

Assume T ¢ L
poo
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of o(T). If (1) =, assume f£(0) = 0. Then Be(p) = £ ghiee

Proof. We recall that fu,, is given by I g(ﬁ)d(f*uT)(ﬁ) =

I g(f(w))duT(w)a Thus we need only show that for (1) =

10g &g, (22(1))) = f 108]e, (22()) g (),

and for =(l) <»
log Alz - £(T)) = J{Eﬁg[z - f(w)lduT(w).

These follow from (6) of 3.13.

h,p Remark. If T 1is normal it is easy to see that HT is the obvious
measure; namely, uT(F) = T(EF(T)). Thus for normal operators, the
conclusion of 4.1 holds even if f is only Borel (provided £(T) e Iq’m
for some q e (O,»)). Thus, once we know that there is a normal T such
that “T is a continuous measure, we can conclude that there are no

general restrictions (other than. [ |w|%du(w) <« for some q) on what

measures can occur,

Tll T12
4,3 Theorem. Suppose T ¢ Ib . 1s of the form ( ) as in
? 0 T
ls 8, then MT = HT + }J_T . 22
11 22
g, (zT;,) *

Proof, gk(zT) = < Thus it is trivial to deduce

0 g, (27,,) )
this from 1.8 and 3.13.

Note. Under the above hypotheses o(T) = G(Tll) U G(ng). The proof

uses index and is the same as the usual proof for compact operators in B(H

20




.4 Remark., Suppose o(T) is not connected and P, 1s the Riesz
4o 4 Remarx

projection for some open-closed set C C o(T). Let P be the self-

adjoint projection with the same range as Fy (PO ig only an idempotent).

= = —3 = . . Iy ‘t
Then Tll T\POH POT‘POH T]PH PT{PH Also ng is similar to

= (1 - PO)T Thus 1.9 can be used to deduce that

| (1-7,)8 | (1-3 )8

i, = _ . Of course = and = | . Now
T 7| (1-B,)E P [ T, T|e(T)\C

#(P) <= if andonly if 0 ¢ C or (1) <=. Inthis case <(P)=7(P) =

(C) = 1g(C)-
11
Tn particular if z # O is an isolated point of o(T), p({z}) = ’E(PO).

Hap

For M= B(H) and 7T the usual trace, this shows that our u is the usual
gpectral multiplicity. Thus our results really do contain Lidskii's

. eorem
obvious Th °

k.5 Lemma, Assume A - 1 ¢ L, , and that A has a matrix represen-
T 3

A B —
Lq,w tation (C D) relative to a projection P ¢ M such that A = PAP is
such invertible in PMP. Then A(E) = a(A)A(D - cA™'B).
>
what Proof. This follows from 1.8 and
( A B > ( 1 0 )( A B )
= ‘-1 - ®
s in C D CA 1 0 D-CA lB
4.6 Theorem. TIf S,T ¢ M and ST,TS ¢ IP(M,7), then p., = M.
e 4 ? ST TS
deduce Proof. We need to show a(gk(zST)) = A(gk(zTS)). We may absorb z
into T and consider only A(gk(ST)) = A(gk(TS)). We will use 4.5, We
*
will choose an g > 0 and let E=E S E =F Sy). We
,roof [0’ S}(] l )3 [O,E](i \ )

will use E to get a 2 x 2 matrix representation for A= gk(ST) and




use E' for A' = gk(TS). ¢ will be chosen small enough that A =

Egk(ST)E and A' = E’gk(TS)E‘ are invertible, and we will show

(7) Ala) = a(Ar), and
(8) AD - ca™B) = a(p - o (e )7hBr).
We can write gk(w) = 1 + i2~k anwn, where the power series has radius

of convergence = ©, Since llms], HSE’H < g, for the invertibility of A
and A" it is sufficient to have g 5 lan\nsnn4lHTnn < 1. This will

n=k
m-1
smply |IA - 1l <1 and hence log &(A) = Re 7(log A) = Re i;:l (-1 .

m
. z((a - 1)™). Moreover, the series for g, can be used to expand
(A - 1)™) in a series. Since a similar expansion holds for A', (7)

will follow from
n n n nl n
(9) <[E(sT) “E(sT) 2 ... E(ST) "E] = <[E(TS) B ... B (18) "E'],

for mism,eeenty > k. To prove (9) we use Theorem 17 of (Brown and Kosakij

which asserts that 1(XY) = ¢(¥YX) whenever XY,YX ¢ Ll(M,T). Here
n, -1 n n

X = BS, ¥ = BT(sT) T E(5T) 2 ... E(ST) "E; and in order to

chow XY = the left side of (9) and YX = the right side of (9), we

use the obvious fact
(10) ES = SE'.
(8) will follow from
(11) (p - CA“lB)s = 5(D> - C‘(A’)_lB‘).

(1 - B)s = 8(1 - B) is an invertible operator from (1L - B )H +o
(1 - E)H, Hence (11) implies that (D - CA‘lB) is similar to
- C’(A‘)-lB*, and 1.9 completes the proof of (8). Now we must prove
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adius
£ A

111
-1

(7)

(osaki)

ve

:S(E’gk(TS)E‘

(1), and we note that it is eguivalent to

:;(12) (1 - E)gk(ST)(l - E)S - (1 - E)gk(ST)(Egk(ST)E)"lgk(ST)(l - E)S

= s(1-® )gk(TS)(l -B)-s(1-F )gk(TS)(E‘ %k(TS)E‘ )“lgk(’fs)(l - E ).

Finally, (12) follows from repeated applications of (10) and
(13) gk(ST)S = Sgk(TS).

n particular, we note that (10) and (13) imply (Egk(ST)E)“ls =

)‘l (The inverses are taken relative to EME and EIME!. )

4,7. Tt is trivial to check that du L) = duT(ﬁ).
T

4.8, If k is the smallest integer > p, there is a universal constant
I‘p such that log A(gk(T)) < I‘PHTili This is proved exactly as in

(Dunford and Schwartz, 1963; page 1106). Use loglgk(w)\ STp\w‘p and

3.8

4,9. TIn (Grothendieck, 1955) the problem of defining spectral multi-

';plici’cy for T e K’r is posed. One might hope to eliminate our restriction,

T el , Tor some D < o, Dy means of theorems on the continuity of

2
T uTo We discuss some partial results (far from adequate for the above

purpose ) on conbinuity.

Su; se T -T i L . Define
ppo n 0 in Dy

iW\PdMT (w), (1) =
dir_(v) = "

Ay (W), (1) <,

(5 )w is bounded, and all & have support on a fixed compact set.
n'n=1 n

"~ '}(‘
ILet 1 Dbe a weak cluster point. By the upper semicontinuity of spectrum,
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U is supported on o{T). For (1) <o, wo(T)) = «(1). For (1) = =,
so far as we know, we cannot rule out the possibility that ﬂ has mass
at 0. By 3.13 (5), respectively (6), for (1) <w, [ fdi = | fdﬂb

for all f holomorphic, respectively harmonic, in a neighborhood of O(T).
For (1) = », we assume f(w) = gﬁz% where g is holomorphic or
harmonic and vanishes to order > p wat 0. If R(o(T)) = c(o(T)), it
follows that W = ﬁb, except for mass at O when (1) = ». Thus

f fldpy - 1) fduTO for all combinuous T such that f(w) = o(lw\p) at

0 if nT(l) = o, This holds in particular if o(T) has area O or if
g(T) has empty interior and C\o(T) has only finitely many components.
Presumably the hypothesis R(a(T)) = ¢(g(T)) is too strong, since it
uses only 3.13(5); but even using 3.13(6) we would still need to assume
o(T) has empty interior. At this time we feel the main issue is whether

any hypothesis on o{T) is really needed.

4,10. Must the support of p be all of of(T) ([o(T)\{fo}1™ if =(1)
©)? Tn particular if p is concentrated at O, must T be quasi-
nilpotent? By 4.4 we know p must have some mass in every non-empty
compact relatively open subset C of o(T) (0 ¢ C if (1) =), Thus
the answer is "yes" if o(T) is totally disconnected.

However, for o(T) not totally disconnected the answer to both questions
is "no". TFor example let T =S & Tn’ where Tn is a truncated shift
on an n-dimensional Hilbert space H . Then it is well known that g(T)
is the unit disk. If we take M= 2 & B(Hn) and choose T so that
(1) < o, then Wp = I bp  is concentrated at 0, since T, is nilpotent
Since M can be embedded,npreserving the trace, in a type II factor, the

answers are also "no" when M is a type II factor. Finally, this example

ok




can be modified so that o(T) is any connected compact set containing O.

APPENDIX

We indicate how to prove Lidskii's Theorem Tor unbounded operators in
Ll(M,T). Our results for unbounded operators are less complete than the
analogous results for bounded operators. We do not know to what extent
they can be improved. A1l operators considered will be T-measuraable

unless the contrary is stated.

A.1 Proposition. Conditions (i)-(iv) below, for an operator A, are

equivalent. Moreover, if DT is the set of operators satisfylng the
conditions, then DT is closed under multiplication, & extends uniquely
to a multiplicative function on D, AeD_ and A(A) > 0 implies

A_l 5 DT, and A ¢ DT if and only if the two factors of its polar

decomposition belong to DT. In particular A € DT implies index A = O,

1

(i) A=37C, B,Cel+ L _,aB)>0.
>

1
(i1) A = CB’l, B, C as in (i).

(1ii) T(log+\A¢) <e and A=1+ T + T with T, of r-finite rank

and Tl € Ll(NLT).

(iv) (log(1 + A - 1])) <.

Proof. 1. (iv) = (iii): Since |A| is spectrally dominated by

1+ |a-1], %(1og+lA\) < 7(10g(1 + |& - 1f)). Also, for T =24 -1,

0 1
2, (1ii) = (iv): Since log(l + x) < x, 7(log(l + ‘Tl‘)) < HTlHl < o,

T =TE and T, = T(1L - E), where E = E(l,m)(\Tl).

Using the inequality
(14) (1og(1 + | + T])) < t(2og(1 + | 1)) + 7(Tog(1 + [T"])),

((Grothendieck; Akemann, Anderson, and Pedersen, 198p; Fack, 1983; and




Brown and Kosaki for the unbounded case), we see it is sufficient to show
t
(log(Ll + |T.])) <w. This follows from s, (t) <1+ s,(=) + s (:G—),
0 Ty 0 = AN 2 T, 2
the above, «r(log+lA1) <w, and the fact that s; (t) = 0 for t
0

sufficiently large.

3. The set of operators satisfying (iii) is closed under multiplication

. , \ .  faas
Let A=14+T o+ T, A =1+ T+ T, T, Ty asin (1ii), and further

assume Tl bounded (the unbounded part of Tl can be assorbed into TO).
t t

T(log+|AA‘\) < o follows from sAA,(t) <s (‘“)SA}( 5)' The second

condition in (iii) follows from AA' = 1 + (T + Ty + T T + T + ) +

('I‘ + T+ 1T )

L, If A= U|A| is the polar decomposition, then A satisfies (iii)
implies U, |A| satisfy (iii): By the above |A|° satisfies (iii).
Using (iv) ® (iii), we see easily that for B> 0, B satisfies (iii)
if and only if 31/2 does. If A=1+ T+ T, |a] =1+ T + T0,
T,, Ty as in (i1i), T,, T) bounded, then 1+ T+ T, = U+ Uy + UL},

— — ] — 1 - i
Thus U= 1+ (TO UI‘O) + T Uy, where T, - UT) e Ll’we Hence

1 1
TO - UTb must be bounded; and since it has t-finite rank, it also is in
L e (It is clear that for bounded operators (iv) is equivalent to
3

belonging to 1 + Iﬁ,m°>

5. (iii1) = (i), (ii): Using the spectral representation of |A],
we see easily that (iv) for |A] implies |A] = cOB'l, CpBel+ Ly,

- * ’

A(B) > 0. Take C = UW,. To get (1), use A= |AT|U,

6. (i), (ii) = (iii): From A(B) > 0, it follows easily that B and
* - - -
B have trivial null-spaces and !Bl L satisfies (iv), Thus B * = ‘Bl lV;
satisfies (iii). Apply step 3.

7. Define A(A) = A(BY "A(C), A, B, C as in (i). The fact that A is

well-defined and multiplicative is deduced from (i) ® (ii) and standard

26




to show

(%),

lication

rther

N s

wrd

algebraic tricks (cf. the construction of the quotient division ring of a

: suitable non-commutative integral domein).

8. AeD, AA)y> 0= At DT: This now follows easily from (i), (ii).
9, Finally, index A = index U= 0, since U e 1 4 Ll e We remark
3
that since index A= 0, A = V!A\ for some unitary V e 1 + Ll e Since
2

it is easy to see how to write |A| in the form (i) and A(V) = 1, the

formula (1) used to define A on 1 + L w 1s valid also on DTe

1,
Let &(T) = 7(log(Ll + |T|)). Then D =1+7L, where L =

fr : 8(T) <=}. It is easy to see that &(AT), 8(TA) < k8(T) where

k= max(l|a],1) (use (1 & x)k > 1+ kx, x> 0), Thie and (14) imply that
kLT is an ideal; i.e., LT is a vector space of T-measureable operators
“vhich is closed under left and right multiplication by bounded operators.
Also L_ is a topological vector space in the metric (8 - T), We will

'also speak of the LT—topology on the coset DT.

A,2 Proposition. A 1s upper semicontinuous in the LT—'topology,

1

Proof. Assume A -~ A= BTC, B, ¢ as in A,1(i). We wish to show

A(a) > Iim A(An). Since B is bounded, BA - C. Therefore we are reduced

 to the case A bounded. Next we claim }Anlg - ]Alg in DT. In fact,

=
™
=
no

i

2 * * S
—\AH—A] +(An—A)A+A(An~A) implies

a(la1? - [a12) <s(|a - A]2) 4 oko(a_ - 4), where k = mex(|la]l,1).
Since 8(‘T!2) = [ log(l + ST(t)2>d’t < [ log(l + ZST(t) + sT(t)g)dt = 28(T),

the claim follows.

We are now reduced to the case A and all An‘ 5> 0. Let As =

A EE[O s}(A>' Since A(AS) L ala) as g} 0, we may replace A by
3

A and A . i ible,
A an 0 PV A+ 8E[O,g}(A) Thus we now assume A invertible

Then A“lAn - 1, so that we have finally reduced to the case A = 1.
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(A is no longer > 0). Now write A =1+ T, Then T -0 in L,
n - n n n T

The proposition follows from log A(An) = 7(log|l + Tn\) < 7(log(l + I’I'nl)
- 0O,

Now it is trivial to deduce from 1.9 that A(PAP”l) = A(A) for
A e DT and P bounded and invertible, but we will prove more later.

We do not know how to handle exponentials of unbounded operators (the

analogue of 1.2 for infinitesimal generators should be investigated),
1 T

but 1.8 is still valid on DT. One proves A( )

12> = 1 by using

1 T
the fact that (O 112> is binormal (T may be regarded as a posi-

12
tive operator). There is no difficulty in extending 1.5, 1.10, and 1l.12,
to unbounded operators. In 1.10, one assumes fé 1og+ ST.('E Jat < =,

We know no satisfactory unbounded version of 1.k, (Thi Ll,m-topology
could be used even for unbounded operators, but this does not help us. )
This means that we also know no satisfactory unbounded version of 3.k,

Nevertheless we can still show that for T e LT, u(z) = log A(L - 2T)
is subharmonic, and harmonic for %‘-# o(T). TFor the first, use u(z) =
log A(A - zB) - log A(A), with A= {1+ |T| )l and B = TA. TFor the
second, first note that if T is unbounded, = e o(T), so that we are
not asserting u is harmonic in a neighborhood of 0. (In fact, it may

be that u(zn) = < for some sequence =z - 0.) Then if Zo % 0 and

L ¢ o(n),
0
(15) log A(1L-2T) = log A(L - ZOT) + log A(L- (z - zo)(l— zOT)'lT),

and (1 - ZOT) Ip ¢ Ll’wo

Now 3.5, 3.6, 3,75 3.8, and 3.9 all go through (for k = 1). {(Also

the improvement of 3,9 for (1) <«,) In connection with these, note
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tnat u(0) = 0> = implies J log, (T%r)duo(w) < e (in particular By
pae no mass at 0). In 2.1 the hypothesis that u be harmonic in & neigh-
porhood of O ig not necessary. The same holds for 2.2 (for k = 1),
put other changes are needed in 2.2: "u vanishes to order at least 1
at 0" should be replaced by "a(0) = 0", and "f # duo(w) < oo,

W
0 < p<1" should be replaced by nf\w‘zl T%T duo(w) < o', In using 2.2,
one applies 3.6 with ¢(x) = log(l + x) to deduce [ log(l ¥ T%T) duo(w) <

c(10g(1 + |T])).

A3 Lemmw. Tf T e L(147) and a e (0,»), then log A(1 - T) <

-Re 1 =3 | s (t)dt.
Re ©(T) + 5 HTJl+2 ST({;))a p(t)dt

Proof. lLet E = E[o,a}(\T\ )R E, = E(a’w)(!T\ ), and ty= T(EB) < o,
Assume log A(L - T) > =0,

log A(1 - T) = = <(og(|2 - T|?))
T(El log(l -2 Re T + iTle)El) + %‘* T(E2 log(|1 - T\e)E2)
t )
T(El(~2Re T + \T\Q)El) + él-f 0 Log((1 + sT(t))g)dt

0

2 o
< T(—-gEl(Re T)El + Elm El) +j;) log(l + sT(t))dt

%
< -Re 7(E;TE) + %‘-T(Elmlg) +fo © 5(t)at.

 Here we have used the inequality log(l + x) < x and spectral dominance
arguments.
' t
. 2 2 0
Now since El\T\ < alt|, T(El\m\ ) < alrl 1+ Also IR sp(t)dt =

sT(t)d‘c. Finally, |Re ¢(T) - Re T(El'I‘El)l = {T(Eg(Re T)Eg)l <

, by a spectral dominance argument.




AM Temma. Tf T e LN(M,7), then u(z) < Re ¢(2T) + o(|z|) as

z - O,

Proot. Take & = |2|Y2 and appy A3 to zn. 2 fanll, = & |2 3/2)p), -

o(lz]). Also

([ s, p(t)at = |z| f sp(t)at = o(lz]).
S, tPa ST(t)>§zl -1/2

A.5 Proposition. If T & (M, 1), then lim %u(rele) - -Re (1)
1, ae -0,
(=)
on

Proof. By A.b % u(rele) + Re T(eleT) < :f’r(e), where f = is a non-
negative function on the circle and fr - 0 uniformly as r - 0. Also

2}; 12" a(re'®)a0 > u(0) = 0, and [2" +(e*¥)a = 0. Thus

12 a(zel®) + re w(e*m), < £ (0) - % u(re™®) - Fe w(e*mly + lig,lly

2 . ;
-1 (n00) - L u(ze'®) - Re a(e™r))a0 + e I,

1 2"
<= fo £ (0)a + ||z ll, = 2l ~0 a5 ¥ -

A.6 Theorem. 1(T) = wduT(w) for T e Ll(M,T).

Proof. By the unbounded version of 3.8, [ |w]du(w) < ©, so that the
operator of multiplication by w is in Ll(rﬁ,r), where M= L°(du(w)).
Thus A.5 for M gives 1lim % u(reie) = -Re [ eiewdu(w) in Lla Compari
this equation with A.5 fz;o+T, we see that Re(ej‘ef(T)) = Re(ei9 [ wdu(w))

for almost every 6. This gives the theorem.

We are now able to extend 3.10, 3.12, and 4.1 to unbounded operators.

Instead of using holomorphic functions, we use meromorphic functions
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‘(meromorphic at » also, 1f T is unbounded); and we always assume that 1if
£ has a pole at a finite point z—l‘ ¢ o(T), then A(gk(zOT)) > 0. (Here,
6]
cither T ¢ LT and k=1, or T e Lp o) If f hasa poleat O
. 2

fy(which we allow to occur only if (1) <), we also assume A(T) > 0.

~~"The extension of 3.12 to meromorphic functions when T € Lp,oo is now
trivial. If T e LT and has non-empty resolvent set, (15) shows that pj
is the appropriate mSbius transform of pg, where 8 = (1 - ZOT)_:LT < Ll’oo,
o) 50 that 3.12 for T follows from 3,12 for S. Otherwise £ has to be
rational and 3.12 follows trivially from 3.9. The extension of 4,1 is:
| (16) If Te LP’OO and f satisfies the above assumptions, and has
n- , a O of order at least k at O if (1) = » then
Me(r) = Tape
(17) If T e LT and f satisfies the same assumptions (k = 1),
then Mf(‘l‘) = f*uT.
For Tel _, the condition on the order of f at 0 is stricter

Ps
_for T meromorphic than for I holomorphic, since we do not know how to

 comstruct p, for unbounded T € IP(M, 7).

r -0 Now the unbounded version of 3.10 is clear:

(18) If T satisfies the usual conditions and f(T) e L, 1),
then t(£(1)) = [ £(w)au;(v).

f_This follows from A.6, (16), and (17).

Finally we wish to prove Ko = Mpg in the unbounded case. We note

paring that it is no longer true that o(sTI\{o} = o(TS)\f0}. For example take

0 X 1Y
S = s T = o ol ST = 0, but if X + ¥ is unbounded, TS

has empty resolvent set. This gives additional insight on why the support

of u need not be the whole spectrum,
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A,7 Lemma, Assume A,B ¢ DT’ PeM PA=3BP, and P is 1-1 and
has dense range. Then A(4) = A(B).

Proof, We may assume P> 0, ILet E = E (P), ¥ = E (p),
Proof Z N T
n’ ’n

P =EP+LF, and Q =F 4+ nf P. Then P=PQ =QP and P
n n n n n n n nn nn n

is invertible. Therefore A(A) = A(PnAP;ll). We claim PnAP;ll -+ B in the

-1

LT~topology. In fact PnAPn -~ B = Fn(A - B)Frl + EnBFnQn - EnBFn +

FAE L P . FBE. Bach of the five terms » O in L  since |lo | <1,
n nn n n n T n -

H%l- P;ll]i <1, end F T, TF -0, VTe L . The last assertion follows

from the fact that VYe>0, T = Ty + T, with 5(TO) <e and T, e Ll'(M,-c).f

1
Thus A.2 implies A(B) > A(A).  Similarly, A(A) > A(B).

A, 8 Definition. ILet A, B be T-measureable and P a closed densely

defined operator affiliated with. M (not necessarily t-measureable).

We say that P intertwines A to B if the graph of P i1s invariant

under A ® B, Here A @ B is a measureable operator affiliated with the
W*-algebra M= M2 ® MC B(H & H) If E is the projection on the graph
of P, then E ¢ M; and E(H ® H) dinvariant under A ® B means
EA®B)x= (A®B)x, Vx ¢ 8(A® B) N E(H® H). (Explicitly,

y e 8(P) N 8(A) and Py e 8(B) implies Ay ¢ §(P) and PAy = BPy,)
However, it is enough to verify E(A® B)x = (A® B)x, Vxe V, where V
is any subspace of H(A® B) N E(H ® H) such that Ve> 0 3 a projection
F<E with 1(F)<g and (E -F)(H®H)CV., In particular if P is
T-measureable, P intertwines A to B 1if and only PA = BP, as

T-measureable operators.

A,9 Proposition. If A,B e DT and P is a closed densely defined

operator affiliated with M (not necessarily t-measureable) such that P
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a ,’is 1-1 and has dense range and P intertwines A to B, then

A(A) = A(B).
P),  proof, Ilet & = E(A® B)E ¢ EMB, where E and M are as in A.8.

‘Then the two projections of H @ H onto H, restricted to E(H @ H),
give bounded intertwining operators from & to A and B. Thus A.7

'implies AR) = A(A) and A(R) = A(B).

A.10 Theorem, Assume P is as in A,9 and P intertwines S to T
. 1
where either 8,7 eI or ST e Lp,oo. Then pg = by If ST el M, 1),

then 7(8) = «(T). .

Proof. Vz, P intertwines g (zS) to gk‘(zm). (Note that S and T

Ly sre bounded if k # 1.) Thus z’_\.(gk(zs)) = A(gk(zT)), which implies kg = P
The last sentence follows from A.6.
&
e A.11l Theorem. If S and T are t-measureable and either ST,TS ¢ LT
b or ST,TS ¢ Lp,oo, then Hop = Hmge
Proof, ILet E and F be the left and right projections of S, and
let U e M be such that U*U =T, UU* = E, Then by triangularity,
Hap = Mpore and “TS = Pppop = MUI‘SU*O Thus, upon replacing S, T by
v ESU*, UIE ¢ EME, we are reduced to the case where S is 1-1 and has
tion dense range.
3 Now the theorem foilows from A.10 and S(TS) = (ST)S.
A.12 Remark. It is clear that the t-measureabllity assumption on S, T
in A.11 is too strong, since A.10 should be A.1l applied to P and SP'l.
However, in the notation of A.11, it may be awkward to phrase sufficient
P

conditions more general than t-measureability.
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A.13 Corollary, If (1) <« and SI,TS € D, then A(sT) = a(Ts).

Proof. D = L  in this case, so that u . = Since
E—— T T ST

Hrpge
log O&(A) = loglw!duA(w) when (1) <o, we are done,
A,14 Remark. A.13 is also valid when M is finite, since in this case
*
M is a direct sum of W -algebras satisfying the hypothesis of A,13.
* %
But the result is false if M is infinite, since A(UU) = 1, A(UU") =

for U an appropriate non-unitary isometry.
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