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Introduction to tensor categories
(Extract from my lecure in [QIIP-II])

1 Categories, functors, and natural transformations

Let us first recall the basic definitions and properties from category theory
that we shall use. For a thorough introduction, see, e.g., [Mac98].

Definition 1.1. A category C consists of

(a) a class Ob C of objects denoted by A,B,C, . . .,
(b) a class Mor C of morphism (or arrows) denoted by f, g, h, . . .,
(c) mappings tar, src : Mor C → Ob C assigning to each morphism f its source

(or domain) src(f) and its target (or codomain) tar(f). We will say that
f is a morphism in C from A to B or write “f : A→ B is a morphism in
C” if f is a morphism in C with source src(f) = A and target tar(f) = B,

(d) a composition (f, g) 7→ g◦f for pairs of morphisms f, g that satisfy src(g) =
tar(f),

(e) and a map id : Ob C → Mor C assigning to an object A of C the identity
morphism idA : A→ A,

such that the

(1) associativity property: for all morphisms f : A → B, g : B → C, and
h : C → D of C, we have

(h ◦ g) ◦ f = h ◦ (g ◦ f),

and the
(2) identity property: idtar(f) ◦ f = f and f ◦ idsrc(f) = f holds for all mor-

phisms f of C,

are satisfied.

Let us emphasize that it is not so much the objects, but the morphisms
that contain the essence of a category (even though categories are usually
named after their objects). Indeed, it is possible to define categories without
referring to the objects at all, see the definition of “arrows-only metacate-
gories” in [Mac98, Page 9]. The objects are in one-to-one correspondence with
the identity morphisms, in this way Ob C can always be recovered from Mor C.

We give an example.

Example 1.2. Let ObSet be the class of all sets (of a fixed universe) and
MorSet the class of total functions between them. Recall that a total function
(or simply function) is a triple (A, f,B), where A and B are sets, and f ⊆
A × B is a subset of the cartesian product of A and B such that for a given
x ∈ A there exists a unique y ∈ B with (x, y) ∈ f . Usually one denotes this
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unique element by f(x), and writes x 7→ f(x) to indicate
(
x, f(x)

)
∈ f . The

triple (A, f,B) can also be given in the form f : A→ B. We define

src
(
(A, f,B)

)
= A, and tar

(
(A, f,B)

)
= B.

The composition of two morphisms (A, f,B) and (B, g, C) is defined as

(B, g, C) ◦ (A, f,B) = (A, g ◦ f, C),

where g ◦ f is the usual composition of the functions f and g, i.e.

g ◦ f = {(x, z) ∈ A× C; there exists a y ∈ B s.t. (x, y) ∈ f and (y, z) ∈ g}.

The identity morphism assigned to an object A is given by (A, idA, A), where
idA ⊆ A×A is the identity function, idA = {(x, x);x ∈ A}. It is now easy to
check that these definitions satisfy the associativity property and the identity
property, and therefore define a category. We shall denote this category by
Set.

Definition 1.3. Let C be a category. A morphism f : A→ B in C is called an
isomorphism (or invertible), if there exists a morphism g : B → A in C such
that g ◦ f = idA and f ◦ g = idB. Such a morphism g is uniquely determined,
if it exists, it is called the inverse of f and denoted by g = f−1. Objects A and
B are called isomorphic, if there exists an isomorphism f : A→ B.

Morphisms f with tar(f) = src(f) = A are called endomorphisms of A.
Isomorphic endomorphism are called automorphisms.

For an arbitrary pair of objects A,B ∈ Ob C we define MorC(A,B) to be
the collection of morphisms from A to B, i.e.

MorC(A,B) = {f ∈ Mor C; src(f) = A and tar(f) = B}.

Often the collections MorC(A,B) are also denoted by homC(A,B) and called
the hom-sets of C. In particular, MorC(A,A) contains exactly the endomor-
phisms of A, they form a semigroup with identity element with respect to the
composition of C (if MorC(A,A) is a set).

Compositions and inverses of isomorphisms are again isomorphisms. The
automorphisms of an object form a group (if they form a set).

Example 1.4. Let (G, ◦, e) be a semigroup with identity element e. Then
(G, ◦, e) can be viewed as a category. The only object of this category is
G itself, and the morphisms are the elements of G. The identity morphism is
e and the composition is given by the composition of G.

Definition 1.5. For every category C we can define its dual or opposite cat-
egory Cop. It has the same objects and morphisms, but target and source are
interchanged, i.e.

tarCop(f) = srcC(f) and srcCop(f) = tarC(f)

and the composition is defined by f ◦opg = g◦f . We obviously have Cop op = C.
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Dualizing, i.e. passing to the opposite category, is a very useful concept
in category theory. Whenever we define something in a category, like an epi-
morphism, a terminal object, a product, etc., we get a definition of a “co-
something”, if we take the corresponding definition in the opposite category.
For example, an epimorphism or epi in C is a morphism in C which is right
cancellable, i.e. h ∈ Mor C is called an epimorphism, if for any morphisms
g1, g2 ∈ Mor C the equality g1 ◦ h = g2 ◦ h implies g1 = g2. The dual notion
of a epimorphism is a morphism, which is an epimorphism in the category
Cop, i.e. a morphism that is left cancellable. It could therefore be called a “co-
epimorphism”, but the generally accepted name is monomorphism or monic.
The same technique of dualizing applies not only to definitions, but also to
theorems. A morphism r : B → A in C is called a right inverse of h : A→ B
in C, if h ◦ r = idB . If a morphism has a right inverse, then it is necessarily an
epimorphism, since g1 ◦ g = g2 ◦ h implies g1 = g1 ◦ g ◦ r = g2 ◦ h ◦ r = g2, if
we compose both sides of the equality with a right inverse r of h. Dualizing
this result we see immediately that a morphism f : A → B that has a left
inverse (i.e. a morphism l : B → A such that l ◦ f = idA) is necessarily a
monomorphism. Left inverses are also called retractions and right inverses are
also called sections. Note that one-sided inverses are usually not unique.

Definition 1.6. A category D is called a subcategory of the category C, if

(1) the objects of D form a subclass of Ob C, and the morphisms of D form a
subclass of Mor C,

(2) for any morphism f of D, the source and target of f in C are objects of D
and agree with the source and target taken in D,

(3) for every object D of D, the identity morphism idD of C is a morphism of
D, and

(4) for any pair f : A→ B and g : B → C in D, the composition g ◦ f in C is
a morphism of D and agrees with the composition of f and g in D.

A subcategory D of C is called full, if for any two objects A,B ∈ ObD all
C-morphisms from A to B belong also to D, i.e. if

MorD(A,B) = MorC(A,B).

Remark 1.7. If D is an object of D, then the identity morphism of D in D is
the same as that in C, since the identity element of a semigroup is unique, if
it exists.

Exercise 1.8. Let (G, ◦, e) be a unital semigroup. Show that a subsemigroup
G0 of G defines a subcategory of (G, ◦, e) (viewed as a category), if and only
if e ∈ G0.

Definition 1.9. Let C and D be two categories. A covariant functor (or simply
functor) T : C → D is a map for objects and morphisms, every object A ∈ Ob C
is mapped to an object T (A) ∈ ObD, and every morphism f : A → B in C
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is mapped to a morphism T (f) : T (A)→ T (B) in D, such that the identities
and the composition are respected, i.e. such that

T (idA) = idT (A), for all A ∈ Ob C
T (g ◦ f) = T (g) ◦ T (f), whenever g ◦ f is defined in C.

We will denote the collection of all functors between two categories C and D
by Funct(C,D).

A contravariant functor T : C → D maps an object A ∈ Ob C to an object
T (A) ∈ ObD, and a morphism f : A→ B in C to a morphism T (f) : T (B)→
T (A) in D, such such that

T (idA) = idT (A), for all A ∈ Ob C
T (g ◦ f) = T (f) ◦ T (g), whenever g ◦ f is defined in C.

Example 1.10. Let C be a category. The identity functor idC : C → C is defined
by idC(A) = A and idC(f) = f .

Example 1.11. The inclusion of a subcategory D of C into C also defines a
functor, we can denote it by ⊆: D → C or by D ⊆ C.

Example 1.12. The functor op : C → Cop that is defined as the identity map
on the objects and morphisms is a contravariant functor. This functor allows
to obtain covariant functors from contravariant ones. Let T : C → D be a
contravariant functor, then T ◦ op : Cop → D and op ◦ T : C → Dop are
covariant.

Example 1.13. Let G and H be unital semigroups, then the functors T : G→
H are precisely the identity preserving semigroup homomorphisms from G to
H.

Functors can be composed, if we are given two functors S : A → B and
T : B → C, then the composition T ◦ S : A → C,

(T ◦ S)(A) = T (S(A)), for A ∈ ObA,
(T ◦ S)(f) = T (S(f)), for f ∈ MorA,

is again a functor. The composite of two covariant or two contravariant func-
tors is covariant, whereas the composite of a covariant and a contravariant
functor is contravariant. The identity functor obviously is an identity w.r.t.
to this composition. Therefore we can define categories of categories, i.e. cat-
egories whose objects are categories and whose morphisms are the functors
between them.

Definition 1.14. Let C and D be two categories and let S, T : C → D be two
functors between them. A natural transformation (or morphism of functors)
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η : S → T assigns to every object A ∈ Ob C of C a morphism ηA : S(A) →
T (A) such that the diagram

S(A)
ηA //

S(f)

��

T (A)

T (f)

��
S(B)

ηB // T (B)

is commutative for every morphisms f : A → B in C. The morphisms ηA,
A ∈ Ob C are called the components of η. If every component ηA of η : S → T
is an isomorphism, then η : S → T is called a natural isomomorphism (or a
natural equivalence), in symbols this is expressed as η : S ∼= T .

We will denote the collection of all natural transformations between two
functors S, T : C → D by Nat(S, T ).

Exercise 1.15. Let G1 and G2 be two groups (regarded as categories as in
Example 1.4). S, T : G1 → G2 are functors, if they are group homomorphisms,
see Example 1.13. Show that there exists a natural transformation η : S → T
if and only if S and T are conjugate, i.e. if there exists an element h ∈ G such
that T (g) = hS(g)h−1 for all g ∈ G1.

Definition 1.16. Natural transformations can also be composed. Let S, T, U :
B → C and let η : S → T and ϑ : T → U be two natural transformations. Then
we can define a natural transformation ϑ·η : S → U , its components are simply
(ϑ · η)A = ϑA ◦ ηA. To show that this defines indeed a natural transformation,
take a morphism f : A→ B of B. Then the following diagram is commutative,
because the two trapezia are.

S(A)

ηA

##

S(f)

��

(ϑ·η)A=ϑA◦ηA // U(A)

U(f)

��

T (A)

ϑA

;;

T (f)

��
T (B)

ϑB

##
S(B)

ηB
;;

(ϑ·η)B=ϑB◦ηB
// U(B)

For a given functor S : B → C there exists also the identical natural trans-
formation idS : S → S that maps A ∈ ObB to idS(A) ∈ Mor C, it is easy to
check that it behaves as a unit for the composition defined above.

Therefore we can define the functor category CB that has the functors from
B to C as objects and the natural transformations between them as morphisms.
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Remark 1.17. Note that a natural transformation η : S → T has to be de-
fined as the triple (S, (ηA)A, T ) consisting of its the source S, its components
(ηA)A and its target T . The components (ηA)A do not uniquely determine the
functors S and T , they can also belong to a natural transformation between
another pair of functors (S′, T ′).

Definition 1.18. Two categories B and C can be called isomorphic, if there
exists an invertible functor T : B → C. A useful weaker notion is that of
equivalence or categorical equivalence. Two categories B and C are equivalent,
if there exist functors F : B → C and G : C → B and natural isomorphisms
G ◦ F ∼= idB and F ◦G ∼= idC.

2 Products and coproducts

We will look at products and coproducts of objects in a category. The idea
of the product of two objects is an abstraction of the Cartesian product of
two sets. For any two sets M1 and M2 their Cartesian product M1 ×M2 has
the property that for any pair of maps (f1, f2), f1 : N → M1, f2 : N → M2,
there exists a unique map h : N →M1×M2 such that fi = pi ◦h for i = 1, 2,
where pi : M1 ×M2 → Mi are the canonical projections pi(m1,m2) = mi.
Actually, the Cartesian product M1×M2 is characterized by this property up
to isomorphism (of the category Set, i.e. set-theoretical bijection).

Definition 2.1. A triple (AΠ B, πA, πB) is called a product (or binary prod-
uct) of the objects A and B in the category C, if for any object C ∈ Ob C and
any morphisms f : C → A and g : C → B there exists a unique morphism h
such that the following diagram commutes,

C
f

{{
h

��

g

##
A AΠ B

πA

oo
πB

// B

We will also denote the mediating morphism h : C → AΠ B by [f, g].

Often one omits the morphisms πA and πB and simply calls AΠ B the product
of A and B. The product of two objects is sometimes also denoted by A×B.

Proposition 2.2. (a) The product of two objects is unique up to isomorphism,
if it exists.

(b) Let f1 : A1 → B1 and f2 : A2 → B2 be two morphisms in a category
C and assume that the products A1Π A2 and B1Π B2 exist in C. Then
there exists a unique morphism f1Π f2 : A1Π A2 → B1Π B2 such that
the following diagram commutes,
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A1
f1 // B1

A1Π A2

πA1

::

πA2 $$

f1Π f2 // B1Π B2

πB1

dd

πB2zz
A2

f2

// B2

(c) Let A1, A2, B1, B2, C1, C2 be objects of a category C and suppose that the
products A1Π A2, B1Π B2 and C1Π C2 exist in C. Then we have

idA1
Π idA2

= idA1Π A2
and (g1Π g2) ◦ (f1Π f2) = (g1 ◦ f1)Π (g2 ◦ f2)

for all morphisms fi : Ai → Bi, gi : Bi → Ci, i = 1, 2.

Proof. (a) Suppose we have two candidates (P, πA, πB) and (P ′, π′A, π
′
B) for

the product of A and B, we have to show that P and P ′ are isomorphic.
Applying the defining property of the product to (P, πA, πB) with C = P ′

and to (P ′, π′A, π
′
B) with C = P , we get the following two commuting

diagrams,

P ′

π′
A

~~
h

��

π′
B

  
A P

πA

oo
πB

// B

P
πA

~~
h′

��

πB

  
A P ′

π′
A

oo
π′
B

// B

We get πA ◦ h ◦ h′ = π′A ◦ h′ = πA and πB ◦ h ◦ h′ = π′B ◦ h′ = πB , i.e. the
diagram

P
πA

��
h◦h′

��

πB

��
A P

πA

oo
πB

// B

is commutative. It is clear that this diagram also commutes, if we replace
h ◦ h′ by idP , so the uniqueness implies h ◦ h′ = idP . Similarly one proves
h′ ◦ h = idP ′ , so that h : P ′ → P is the desired isomorphism.

(b) The unique morphism f1Π f2 exists by the defining property of the prod-
uct of B1 and B2, as we can see from the diagram

A1Π A2

f1◦πA1

zz
f1Π f2

��

f2◦πA2

$$
B1 B1Π B2πB1

oo
πB2

// B2
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(c) Both properties follow from the uniqueness of the mediating morphism in
the defining property of the product. To prove idA1

Π idA2
= idA1Π A2

one
has to show that both expressions make the diagram

A1Π A2

idA1

zz ��

idA2

$$
A1 A1Π A2πA1

oo
πA2

// A2

commutative, for the the second equality one checks that (g1Π g2) ◦
(f1Π f2) and (g1 ◦ f1)Π (g2 ◦ f2) both make the diagram

A1Π A2

g1◦f1

zz ��

g2◦f2

$$
C1 C1Π C2πC1

oo
πC2

// C2

commutative.
ut

The notion of product extends also to more then two objects.

Definition 2.3. Let (Ai)i∈I be a family of objects of a category C, indexed

by some set I. The pair
(∏

i∈I Ai,
(
πj :

∏
i∈I Ai → Aj

)
j∈I

)
consisting of an

object
∏
i∈I Ai of C and a family of morphisms

(
πj :

∏
i∈I Ai → Aj

)
j∈I of

C is a product of the family (Ai)i∈I if for any object C and any family of
morphisms (fi : C → Ai)i∈I there exists a unique morphism h : C →

∏
i∈I Ai

such that
πj ◦ h = fj , for all j ∈ I

holds. The morphism πj :
∏
i∈I Ai → Aj for j ∈ I is called the jth product

projection. We will also write [fi]i∈I for the morphism h : C →
∏
i∈I Ai.

An object T of a category C is called terminal, if for any object C of C
there exists a unique morphism from C to T . A terminal object is unique
up to isomorphism, if it exists. A product of the empty family is a terminal
object.

Exercise 2.4. (a) We say that a category C has finite products if for any
family of objects indexed by a finite set there exists a product. Show that
this is the case if and only if it has binary products for all pairs of objects
and a terminal object.

(b) Let C be a category with finite products, and let
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C1
h1 // D1

A
f // B

g1
>>

g2   
C2

h2

// D2

be morphisms in C. Show

(h1Π h2) ◦ [g1, g2] = [h1 ◦ g1, h2 ◦ g2] and [g1, g2] ◦ f = [g1 ◦ f, g2 ◦ f ].

Remark 2.5. Let C be a category that has finite products. Then the product is
associative and commutative. More precisely, there exist natural isomorphisms
αA,B,C : AΠ (BΠ C) → (AΠ B)C and γA,B : BΠ A → AΠ B for all
objects A,B,C ∈ Ob C.

The notion coproduct is the dual of the product, i.e.∐
i∈I

Ai,

(
ıj : Aj →

∐
i∈I

Ai

)
j∈I


is called a coproduct of the family (Ai)i∈I of objects in C, if it is a product
of the same family in the category Cop. Formulated in terms of objects and
morphisms of C only, this amounts to the following.

Definition 2.6. Let (Ai)i∈I be a family of objects of a category C, indexed

by some set I. The pair
(∐

i∈I Ai,
(
ıj : Ak →

∏
i∈I Ai

)
j∈I

)
consisting of an

object
∐
i∈I Ai of C and a family of morphisms

(
ıj : Aj →

∐
i∈I Ai

)
j∈I of C

is a coproduct of the family (Ai)i∈I if for any object C and any family of
morphisms (fi : Ai → C)i∈I there exists a unique morphism h :

∐
i∈I Ai → C

such that
h ◦ ıj = fj , for all j ∈ I

holds. The morphism ıj : Aj →
∏
i∈I Ai for j ∈ I is called the jth coproduct

injection. We will write [fi]i∈I for the morphism h :
∏
i∈I Ai → C.

A coproduct of the empty family in C is an initial object, i.e. an object I
such that for any object A of C there exists exactly one morphism from I to
A.

It is straightforward to translate Proposition 2.2 to its counterpart for the
coproduct.

Example 2.7. In the trivial unital semigroup (G = {e}, ·, e), viewed as a cate-
gory (note that is is isomorphic to the discrete category over a set with one
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element) its only object G is a terminal and initial object, and also a prod-
uct and coproduct for any family of objects. The product projections and
coproduct injections are given by the unique morphism e of this category.

In any other unital semigroup there exist no initial or terminal objects and
no binary or higher products or coproducts.

Example 2.8. In the category Set a binary product of two sets A and B is given
by their Cartesian product A×B (together with the obvious projections) and
any set with one element is terminal. A coproduct of A and B is defined
by their disjoint union A∪̇B (together with the obvious injections) and the
empty set is an initial object. Recall that we can define the disjoint union as
A∪̇B = (A× {A}) ∪ (B × {B}).

Exercise 2.9. Let Vek be the category that has as objects all vector spaces
(over some field K) and as morphisms the K-linear maps between them. The
trivial vector space {0} is an initial and terminal object in this category.
Show that the direct sum of (finitely many) vector spaces is a product and a
coproduct in this category.

The following example shall be used throughout this Section and the fol-
lowing.

Example 2.10. The coproduct in the category of unital algebras Alg is the free
product of ∗-algebras with identification of the units. Let us recall its defining
universal property. Let {Ak}k∈I be a family of unital ∗-algebras and

∐
k∈I Ak

their free product, with canonical inclusions {ik : Ak →
∐
k∈I Ak}k∈I . If

B is any unital ∗-algebra, equipped with unital ∗-algebra homomorphisms
{i′k : Ak → B}k∈I , then there exists a unique unital ∗-algebra homomorphism
h :
∐
k∈I Ak → B such that

h ◦ ik = i′k, for all k ∈ I.

It follows from the universal property that for any pair of unital ∗-algebra
homomorphisms j1 : A1 → B1, j2 : A2 → B2 there exists a unique unital ∗-
algebra homomorphism j1

∐
j2 : A1

∐
A2 → B1

∐
B2 such that the diagram

A1

iA1

zz

j1 // B1
iB1

##
A1

∐
A2 j1

∐
j2 // B1

∐
B2

A2

iA2

dd

j2
// B2

iB2

;;

commutes.
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The free product
∐
k∈I Ak can be constructed as a sum of tensor products

of the Ak, where neighboring elements in the product belong to different
algebras. For simplicity, we illustrate this only for the case of the free product
of two algebras. Let

A =
⋃
n∈N
{ε ∈ {1, 2}n|ε1 6= ε2 6= · · · 6= εn}

and decompose Ai = C1⊕A0
i , i = 1, 2, into a direct sum of vector spaces. As

a coproduct A1

∐
A2 is unique up to isomorphism, so the construction does

not depend on the choice of the decompositions.
Then A1

∐
A2 can be constructed as

A1

∐
A2 =

⊕
ε∈A
Aε,

where A∅ = C, Aε = A0
ε1 ⊗ · · · ⊗ A

0
εn for ε = (ε1, . . . , εn). The multiplication

in A1

∐
A2 is inductively defined by

(a1 ⊗ · · · ⊗ an) · (b1 ⊗ · · · ⊗ bm) =

{
a1 ⊗ · · · ⊗ (an · b1)⊗ · · · ⊗ bm if εn = δ1,
a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm if εn 6= δ1,

for a1 ⊗ · · · ⊗ an ∈ Aε, b1 ⊗ · · · ⊗ bm ∈ Aδ. Note that in the case εn =
δ1 the product an · b1 is not necessarily in A0

εn , but is in general a sum of
a multiple of the unit of Aεn and an element of A0

εn . We have to identify
a1 ⊗ · · · an−1 ⊗ 1⊗ b2 ⊗ · · · bm with a1 ⊗ · · · ⊗ an−1 · b2 ⊗ · · · bm.

Since
∐

is the coproduct of a category, it is commutative and associative
in the sense that there exist natural isomorphisms

γA1,A2 : A1

∐
A2

∼=→ A2

∐
A1, (2.1)

αA1,A2,A3
: A1

∐(
A2

∐
A3

) ∼=→ (
A1

∐
A2

)∐
A3

for all unital ∗-algebras A1,A2,A3. Let i` : A` → A1

∐
A2 and i′` : A` →

A2

∐
A1, ` = 1, 2 be the canonical inclusions. The commutativity constraint

γA1,A2
: A1

∐
A2 → A2

∐
A1 maps an element of A1

∐
A2 of the form

i1(a1)i2(b1) · · · i2(bn) with a1, . . . , an ∈ A1, b1, . . . , bn ∈ A2 to

γA1,A2

(
i1(a1)i2(b1) · · · i2(bn)

)
= i′1(a1)i′2(b1) · · · i′2(bn) ∈ A2

∐
A1.

Exercise 2.11. We also consider non-unital algebras. Show that the free prod-
uct of ∗-algebras without identification of units is a coproduct in the category
nuAlg of non-unital (or rather not necessarily unital) algebras. Give an explicit
construction for the free product of two non-unital algebras.

Exercise 2.12. Show that the following defines a a functor from the category
of non-unital algebras nuAlg to the category of unital algebras Alg. For an
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algebra A ∈ Ob nuAlg, Ã is equal to Ã = C1 ⊕ A as a vector space and the
multiplication is defined by

(λ1 + a)(λ′1 + a′) = λλ′1 + λ′a+ λa′ + aa′

for λ, λ′ ∈ C, a, a′ ∈ A. We will call Ã the unitization of A. Note that
A ∼= 01 +A ⊆ Ã is not only a subalgebra, but even an ideal in Ã.

How is the functor defined on the morphisms?
Show that the following relation holds between the free product with iden-

tification of units
∐

Alg and the free product without identification of units∐
nuAlg,

˜A1

∐
nuAlg

A2
∼= Ã1

∐
Alg

Ã2

for all A1,A2 ∈ Ob nuAlg.
Note furthermore that the range of this functor consists of all algebras that

admit a decomposition of the form A = C1 ⊕A0, where A0 is a subalgebra.
This is equivalent to having a one-dimensional representation. The functor is
not surjective, e.g., the algebra M2 of 2× 2-matrices can not be obtained as
a unitization of some other algebra.

3 Tensor categories and tensor functors

Let us now come to the definition of a tensor category.

Definition 3.1. A category (C,�) equipped with a bifunctor � : C × C → C,
called tensor product, that is associative up to a natural isomorphism

αA,B,C : A�(B�C)
∼=→ (A�B)�C, for all A,B,C ∈ Ob C,

and an element E that is, up to natural isomorphisms

λA : E�A
∼=→ A, and ρA : A�E

∼=→ A, for all A ∈ Ob C,

a unit for �, is called a tensor category or monoidal category, if the pentagon
axiom

(A�B)�(C�D)
αA�B,C,D

))
A�
(
B�(C�D)

)
αA,B,C�D

55

idA�αB,C,D

��

(
(A�B)�C

)
�D

A�
(
(B�C)�D

)
αA,B�C.D

//
(
A�(B�C)

)
�D

αA,B,C�idD

OO
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and the triangle axiom

A�(E�C)
αA,E,C //

idA�λC &&

(A�E)�C

ρA�idCxx
A�C

are satisfied for all objects A,B,C,D of C.

Example 3.2. If a category has products or coproducts for all finite sets of
objects, then the universal property guarantees the existence of the isomor-
phisms α, λ, and ρ that turn it into a tensor category.

A functor between tensor categories, that behaves “nicely” with respect to
the tensor products, is called a tensor functor or monoidal functor, see, e.g.,
Section XI.2 in MacLane[Mac98].

Definition 3.3. Let (C,�) and (C′,�′) be two tensor categories. A coten-
sor functor or comonoidal functor F : (C,�) → (C′,�′) is an ordinary
functor F : C → C′ equipped with a morphism F0 : F (EC) → EC′ and
a natural transformation F2 : F ( ·� · ) → F ( · )�′F ( · ), i.e. morphisms
F2(A,B) : F (A�B) → F (A)�′F (B) for all A,B ∈ Ob C that are natural
in A and B, such that the diagrams

F
(
A�(B�C)

) F (αA,B,C) //

F2(A,B�C)

��

F
(
(A�B)�C

)
F2(A�B,C)

��
F (A)�′F (B�C)

idF (A)�
′F2(B,C)

��

F (A�B)�′F (C)

F2(A,B)�′idF (C)

��
F (A)�′

(
F (B)�′F (C)

)
α′

F (A),F (B),F (C)

//
(
F (A)�′F (B)

)
�′F (C)

(3.1)

F (B�EC)
F2(B,EC) //

F (ρB)

��

F (B)�′F (EC)

idB�′F0

��
F (B) F (B)�′EC′

ρ′F (B)

oo

(3.2)

F (EC�B)
F2(EC,B) //

F (λB)

��

F (EC)�′F (B)

F0�
′idB

��
F (B) EC′�′F (B)

λ′
F (B)

oo

(3.3)

commute for all A,B,C ∈ Ob C.
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The functors in this definition are called cotensor functors, because w.r.t. the
usual definition of tensor functors we have reversed the direction of F0 and
F2. In the case of a strong tensor functor, i.e. when all the morphisms are
isomorphisms, our definition of a cotensor functor1is equivalent to the usual
definition of a tensor functor as, e.g., in MacLane[Mac98].

The conditions are exactly what we need to get morphisms

Fn(A1, . . . , An) : F (A1� · · ·�An)→ F (A1)�′ · · ·�′F (An)

for all finite sets {A1, . . . , An} of objects of C such that, up to these morphisms,
the functor F : (C,�)→ (C′,�′) is a homomorphism.

4 Classical stochastic independence and the product of
probability spaces

The product of probability spaces is also an example of a tensor product.
This observation can be used to develop an abstract approach to the notion
of stochastic independence, see [Fra02, QIIP-II].

Two random variables X1 : (Ω,F , P ) → (E1, E1) and X2 : (Ω,F , P ) →
(E2, E2), defined on the same probability space (Ω,F , P ) and with values
in two possibly distinct measurable spaces (E1, E1) and (E2, E2), are called
stochastically independent (or simply independent) w.r.t. P , if the σ-algebras
X−11 (E1) and X−12 (E2) are independent w.r.t. P , i.e. if

P
(
(X−11 (M1) ∩X−12 (M2)

)
= P

(
(X−11 (M1)

)
P
(
X−12 (M2)

)
holds for all M1 ∈ E1, M2 ∈ E2. If there is no danger of confusion, then the
reference to the measure P is often omitted.

This definition can easily be extended to arbitrary families of random
variables. A family

(
Xj : (Ω,F , P )→ (Ej , Ej))j∈J , indexed by some set J , is

called independent, if

P

(
n⋂
k=1

X−1jk (Mjk)

)
=

n∏
k=1

P
(
X−1jk (Mjk)

)
holds for all n ∈ N and all choices of indices k1, . . . , kn ∈ J with jk 6= j` for
j 6= `, and all choices of measurable sets Mjk ∈ Ejk .

There are many equivalent formulations for independence, consider, e.g.,
the following proposition.

Proposition 4.1. Let X1 and X2 be two real-valued random variables. The
following are equivalent.

1 N.B.: In the groupe de travail we will need tensor functors as defined in
MacLane[Mac98].
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(i) X1 and X2 are independent.
(ii)For all bounded measurable functions f1, f2 on R we have

E
(
f1(X1)f2(X2)

)
= E

(
f1(X1)

)
E
(
f2(X2)

)
.

(iii)The probability space (R2,B(R2), P(X1,X2)) is the product of the probability
spaces (R,B(R), PX1

) and (R,B(R), PX2
), i.e.

P(X1,X2) = PX1
⊗ PX2

.

We see that stochastic independence can be reinterpreted as a rule to
compute the joint distribution of two random variables from their marginal
distribution. More precisely, their joint distribution can be computed as a
product of their marginal distributions. This product is associative and can
also be iterated to compute the joint distribution of more than two indepen-
dent random variables.
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