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Hilbert modules are ...
» ... a generalization of Hilbert spaces (replacing C by 8).
» ... a generalization of C*—algebras (better: right ideals).
» ... subsets of C*—algebras.

Hilbert bimodules (or ) are ...

» ... powerful functors that, under tensor product, transform
given right or left modules into new ones.

BA(E), the algebra of adjointable operators on Eg,
is a C* or von Neumann algebra ...
» ... capturing (almost) all the simplicity of B(H).
» ... being still sufficiently general to treat many, many problems.

These things occur ...
» ... from dynamical maps (CP-maps, endomorphisms) and
dilation theory.
» ... in representation theory.
» ... in classification of C* (and von Neumann) algebras.
» ... and, and, and ...



An advice:
» Don’t study them (too much) for their own sake;
» study them to solve your problems!
» Problems will guide you to what are interesting questions
about Hilbert modules.

» Still, don’t hesitate to study them if you do have a problem
where Hilbert modules do occur!

Examples:
» Stinespring construction versus GNS-construction for
CP-maps.)
» Tensor product of Connes correspondences versus tensor
product of von Neumann correspondences.
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A complex vector space H with a sesquilinear map
(e,0): Hx H— Cis a:

> if (x,x) > 0.

> if (x,x)=0=x=0.

> if it is complete wrt the norm ||x|| := V{x, x).
Exercise

Prove that (x, y) = (y, x). Is this so for real semi-Hilbert spaces?

a:G—-His if da*: H — G with (ax, y) = (x, a*y).
> :=linear maps a: G — H.
> := adjointable maps a: G — H.
> := bounded linear maps a: G — H.
> := bounded adjointable maps a: G — H.
Exercise

Not two of the spaces L(H), £L2(H), B(H), and B4(H) are equal, if
H is not complete.



Two fundamental results
Cauchy-Schwarz inequality (semi!): (x, y){y, x) < (y, y){X, X).
» Seminorm |le|. (~ quotients. Also GNS!)

> |IXIl = supyy<1 Ky, X)I.  (~ BA(H) is (pre-)C*-algebra.)
> (e,e) continuous. (~ completion.)

Self-duality (Hilbert!): f € B(H,C) = A(!)y e H: f =y, o).
» B(G, H) = B3(G, H) (= L3(G, H)).
» G Hilbert subspace of H = p = p* = p? € B(H): pH = G.
» G subspace of Hilbert H = G = G** and H = G** & G*.
» Hilbert spaces have ONBs.

Exercise

» For p with pH = G, is it necessary that H is Hilbert?
» G, H pre-Hilbert. span S = G, span T = H. Suppose
a:S—>Handa*: T - Gwith{(as,t) = (s, a*t).
Then a and a* extend as mutually adjoint elements
a € L3(G,H) and a* € L4(H, G).



Let 8 denote C*—algebra. A right(!!) 8—module E (often
indicated as Eg) with a sesquilinear map (e,e): EXE — Bis a:

> if (x,x) > 0and (x, yb) = {x, y)b.

> if (x,x)=0=x=0.

> if complete wrt the norm ||x|| := V/[[{Xx, X)||.
Exercise

Prove that (x, y) = (y, x)*.

a: Eg — Fgis if da*: F — E with (ax, y) = (x,a"y).
> :=right linear maps a: E — F.
> := adjointable maps a: E — F.
> := right linear bounded maps a: E — F.
> := bounded adjointable maps a: E — F.
Exercise

» a e LA(E,F) is right linear and closeable, and a* is unique.
» Repeat exercise on B—spanning subsets span SB = E.



Examples:
» A Hilbert space is a Hilbert C—module.
» Bwith (b,b") := b*b’.
» More generally, each closed right ideal of 8.
> Direct sum €D, E; completion of @ E; with (x, y) := 3i{X;, ¥i).
(vNm: There are no others than dlrect sums of right ideals.)
Special case: E" =C"® E. (Here, n =dimC".)
» Closed leftideal L in A. Then L is a Hilbert module over the
heriditary subalgebra 8 := span L*L of ‘A.
» E*:={x*:=(x,e): x € E} c B4(E,B). (Find their adjoints!)
E* is Hilbert I(E)—module,
where X(E) := span{xy*: x,y € E} c B4(E).
Note: E is if E* = B"(E, B).
Ideals are rarely self-dual. (Say when! ~» examples.)
Exercise

» B unital: E not self-dual, then B"(B® E) + BA(B& E)
» Is the opposite true? (E self-dual = B'(E) = B3(E)?)



We see: HM behave to quite an extent like pre-HS.  Fortunately:
Cauchy-Schwarz inequality (semi!): (x, y)(y, X) < |Ky, VIl {x, X).

Proof: As for (semi-)Hilbert spaces.

» For (y,y) # 0, take z = |y, ¥)II> x — y(y, x) and use (z, z) > 0.

(You may need the C*—inequality a*bb*a < ||bb*||a*a.)

» What about (y,y) = 0 = (x, x)? O
Consequences:

» Seminorm ||e|. (~> quotients. Also GNS!)

> |IXIl = supyy <1 IKY 0l (~ B2(E) is (pre-)C*-algebra.)

> (e,e) continuous. (~ completion.)

Attention: No problem pre-HM over pre-C*.
However, when completing E complete also 8.

Exercise (1st part accessible, 2nd part not exactly easy)
> @, Ei = {(x): Zi(xi, X exists}. (Hint: Why here?)
» B unital. Can you identify B" (B"",B)?



From now: Everything completed. (Unless, ...)

Exercise

What if1 € 8?7
Corollary: xx* > 0 in K(g), hence, in X(E) ¢ K[g).

K(%), with Bg = span(E, E).
Eis if Be = B.
Note: Beidealin A ~ E is Hilbert A—module.
Consequently: X(E) idealin A ~» E* is Hilbert A—module.
Exercise
» Mn(8B) c B(8") is C*—algebra. The E,:= ((E")")*
is Hilbert M(8)—module with (X, Yn) = ((Xi, ¥;))i;
(o (X0 X))ij = 0 in Mn(B)) and Ba(E,) = B3(E).

» Do the same for (Ep)" = (E™)m =: Mpm(E).



Exercise

» A of a C*—algebra 8 is pair (L, R) of maps
on B such that bL(b’) = R(b)b’. Show B4(8B) = M(B)
where M(8) := {(L, R)} is the

» (Can you characterize £3(8B) and B3(8) when B is only pre?)
» Show B2(E) = B3(K(E)).
Corollary (Kasparov 1980)
BA(E) = M(X(E))

> : |lok]|,||ke|| with k € K(E).
> : [lex]|, [|x*e|| with x € E.
Exercise

Strict and =—strong topology coincide on bounded subsets.

» Substitute for normality. Depends on E.
» Recognizing A as B24(E) ~» equipping A with a “good”
topology.



A from A to B (or a Hilbert ) E,
denoted frequently #Eg, is:

» A Hilbert B—module E.

» An A-B-bimodule such that the left action defines a
nondegenerate(!) (*—)homomorphism A — B2(E).

Example (Paschke’s GNS-construction for CP-maps, 1973(!))
» A, B unital. (In particular, A!)
»T-A—>8B a , thatis, X;;b;T(a’a;)b; > 0.
» ~» semiinner product on AQ® B
(a®b,a’ @b’y := b*T(a*a’)b’.
» Quotient N := {x: (x,x) = 0} and complete ~ fEg. (CSl)
» £:=11+ N fulfills (¢£,aé) = T(a) and span AEB = E.
Example

Unital endomorphism ¢ of B & 48 (thatis, b.x = 9(b)x).



» Let 4Eg and gFe.
» On E ® F define semiinner product by
<x Ry, X' ® y’> = <y, (X, x’>y’>.
Is this positive?
» 0<{X,x)=b*b ~
X®Yy,x®y) =y, (X, x)y) = (y,b*by) = (by, by) > 0.

121
» For 3ixi®y; put Xy =(x....5) € E; and Y" =] 1€ F".

» Then (3 xi®yi, 2 X ®y) =(Xp ® Y, Xp® Y") 20
Definition (Rieffel 1974a(?))

The tensor product of E and F is the unique 4E © F¢ generated by
X @y subject to

(x oy, x' o y’> = <y, (X, x’)y’), a(xoy) = (ax)oy.

Yn

Exercise
Show that Mp¢(E) © Mym(F) = Mym(E © F).



Example (Bhat-MS 2000)
» (E,§) =GNSof T: A— B and (F,) = GNSofS: 8 — C.
> Then(€0 ¢, a0 ) = ({, (& aé)) = So T(a).
» S0, GNS-(So T) = (span AL O LC, £OYL).

Gives rise to product systems from CP-semigroups and units.

Example (Rieffel 1974b, Murphy 1997, MS 2000)

» Eg and gGc (that is, G a representation space of B).

» H=E6G ~ x0idg € B(G,H) and ao©idg € B(H).
BcCcB(G) ~ E cB(G,H) and B2(E)c B(H).

» aEg ~ p: A — BE(E) - B(H) .
Indeed, (E,£) GNS of T: A — B c B(G) ~ & € B(G, H) with

&'pla)é = T(a).

Note: With 4Eg, gFc and C c B(L), obviously,
(xoy)oid, = (x0Qidre)(y©idL) e B(LLEOFOL).

v

v



Recall: Eg ~ E* is g;E;‘< (or g E.

(E) 3a(E)-
Exercise

Show E*OE=8Bg and EOE"=X(E), canonically.

Definition (Rieffel 1974b, MS 2009 (preprint))

A and B are {strorgiy) if 3 4Mg and gN#
such that
AMO N7 = 74A4, sNoOMg = gBg.
Mis a from A to B, and N its
» Mis full and (=left action faithful).

» Morita equivalence is an equivalence relation.

Theorem (MS 2009 (preprint))

A full #Mg is a Morita equivalence if and only if the left action
defines an isomorphism onto X(E). (~ “standard” definition.)



» 9: B4(Eg) — B?(F¢) a unital strict homomorphism.
> =strictly continuous on bounded subsets.
» For us: 9(EE*)F is total in F.
(Use a bounded approximate unit for X(E) in span EE*.)

With Fy := E* © gF, we get the chain of isomorphisms
F = span}(EE")F = K(E)0gF = EOQE"0yF = EOFy.

Theorem (Muhly-MS-Solel 2006 (preprint 2004))
u:x' o(x*oy) — 9(x'x")y
defines a unitary E © Fy — F such that¥(a) = u(a ©idr,)u".

Exercise

If E is full, then Fy is unique. (Hint: u € B¥P(E © Fy, 9F). If
(F§, u’) is another pair, consider idg: ©(u*u").)

Exercise
Do the same for normal 9: B(G) — B(H). (Hilbert spaces.)



Eo-Semigroups and product systems

» E full.
» 9. BA(E) — B3(E) a strict Eg—semigroup.
» Ei:= E" o Ewith v;: x 0 (y* 01 2) - 9i(xy*)z
so that ¢; = Vt(O © idt)Vt*.

Exercise (MS 2002 and 2009 (preprint 2004))

The E; form a product system E®, that is:
» E=E"0oE=E*0E = 8.

» EsOFE; = (E*OsE)O(E*®tE) = E*Os(9,E) = E*Os+tE = Estt
via bilinear

Ust: (X" Os X' ) O (Y 0ry’) F— X" Osyt H(X'y")y'.

» The XsYt = Ust(Xs © ;) is associative.
» Egox9g=beB ~ Xy = by; and yixg = y:b.



Recall: K(ﬁ) = (gé gf(;) c (;ﬁ BE(*E)) C Ba(g)

MS 2000 (preprint 1997): A «—algebra A is a if

2
_ R 4 N (P
suchthat Ak Arj C 6k eA;j and ﬂfjcﬂj,i.

Similarly, for (pre-)C*—, W*—, and von Neumann algebras.

Moreover, if A is a matrix (pre-)C*—algebra (etc.), then:
» A;;is (pre-)C*—algebra.
» A,jis (pre-)Hilbert A; j—module with (a,a’) = a*a’.
» Action of A;; on A turns it into (pre-)correspondence from
A to Ajj. (Note: A;; > F(Aij).)



Proposition

Let A = (A,;) be a matrix pre-C*—algebra. Then the subspace
By 1 of Ay 1 Is the 21—corner of a matrix pre-C*—algebra B ¢ A
iff one of the following (obviously equivalent) conditions holds:

> 8218, 1821 C Bzy.

> 3271 (span 32’132,1 ) C B2,1 "
More precisely, in either case, B 1 := span 8, 821 and
Bop = span By 1 B, 54 are x —subalgebras of ?h 1 and Az and with
B2 =8B, ,, the x subalgebra of A generated by Bo 4 is the
matrix =—algebra (8;).

Note: The (x,y,z) — x{y,z) = xy*z plays a role.
Abbaspour Tabadkan-MS 2007: For u: Eg, — F¢, tfae:
» uisa , that is, 3(!) homomorphism
¢: B — C such that (ux, uy) = ¢({x, y)).
» uisa , thatis, uis linear and

u(xyz) = (ux)(uy)*(uz).



Exercise

If A = (A;j) c B(H) nondegenerately, then H = Hy & Ho
where H; = span A, jH, and
Auy € B(H H) € B(H) = ([0, *s)

B(Hi.H2)  B(H2) )°

Definition (Murphy 1997, MS 2006)
Let B c B(G) a concrete C*—algebra. The subspace E c B(G, H)

is a (resp. ) if:
1. EBCE.
2. E*E c 8.
3. span EG = H.
4. E=E (resp. E = E).

Definition (Bikram-Mukherjee-Srinivasan-Sunder 2012)
E =span° EcC B(G,H) isa if EE*E C E.



Recall: Eg and 8 c B(G) ~ E c B(G,H) and B2(E) c B(H)
with H=E o G. (E conc. module,~~ H=EGG,xgH x0g.)

Definition (MS 2000 (preprint 1997))

A (pre-)Hilbert module E over a von Neumann algebra 8 c B(G)
is a if the extended linking algebra is a
matrix von Neumann algebra
(€ nt0) < B = (st&h "5

or, equivalently, if E = E° in B(G, H).
Like B4(E) = B4(E) 0idg  B(H), there is the
o B =BY(G) - ide 0B
Exercise (Double commutant theorem vor vN-modules)
(Pre-)Hilbert module E over a von Neumann algebra 8 c B(G):

E si0) = {(b )i b€ 8’} = (opniany vy )

where for gVg we set Cg(V) = {x € V: bx = xbV¥b € B}.



Exercise
Why is p’ normal?  (Below: Where do we use that p’ is normal?)

Lemma (Muhly-Solel 2002)

o8 % B(H) representation ~» span Cg (B(G,H))G = H.
Proof: Define the vN-algebra A’ := {[* ,)): b’ € 8},

We know its commutant is A := (A’)" = (o, @ia.m ey )

Let P’ € A’ the projection onto Hy := span AG.

Since A’ = B, there is unique p’ € B’ such that P’ = (”’ 76
H>G ~ p=1 ~ Hy=GaoH.

Hence, span Cg (B(G, H))G = p’(p’)Ho = H. i

Corollary (MS 2003, 2006)

There is a bijective functor between the categories
g > (H,E) and g N > (H,p').



Theorem (Rieffel 1974b, MS 2000 (preprint 1997), 2005b)

Von Neumann modules are self-dual (= ).

All (known) proofs have two parts:
» deB(E,B) ~ d0oidge B(E®G,G). (Boundedness!)
» Rieffel 1974b: Banach modules.
» MS 2000, 2005b: Cyclic decomposition of G and polar
decomposition in E.
» doidg € E* c B(H, G).
» MS 2000: QONBs.
» MS 2005b (Rieffel 1974b): ¢ € Cs (B(H, G)) = E.
» Bikram-Mukherjee-Srinivasan-Sunder 2012:
(Only E , that is, span°(E, E) = 8.) ®E c Bso
¢ € span° ®EE* c span° BE* = E*. O

Exercise (MS 2000 (preprint 1997))

Formulate and prove all the pleasant properties of Hilbert spaces
that we listed in the beginning.



A ( ) from a vN-algebra

A c B(K) to a vN-algebra 8 c B(G) is a (concrete) von Neumann
$B-module and an A-B—correspondence such that the Stinespring
representation p: A — B2(E) c B(H) is normal.

Note: [o’(B'), p(A)] = {0}.
Corollary (MS 2003, 2006 (Muhly-Solel 2005 for A # B))

There is a bijective functor between the categories

awNg 3 (H,E) and g 400N > (H,p',p).

The chain (H,E) & (H,0',p) = (H,p,p’) < (H,E)
is a bijective functor, the , between the categories
awNg s (H,E) and gaNg > (H,E').

Note: Cs(E) = ENE = Cg(E).

Note: If Bis in ,then 8’ = B, So, H
becomes a normal A-B-module. (Connes 1980.)



Let Ac B(K), BcB(G), CcB(L) and #Eg, sFc. (AllvN.)
: (Note: (EOF)oL=Eo(Fol))
> Compute E@ Fandtake E&*F:=EoF c B(L,LE®FOL).
» Or: Compute E &° F := span°(E ©ideoL )(F @idL).
(Cf. tensor product of Connes correspondences.)
Easy: Left action is normal!

There is an incredible lot of representations actingon E® F o L!
EoFoL = Eo(FoL) = Eo(F 0G)
a c’ a c’ a c’
=~ FFo(EoG) = Fo(EFoK) = FoE oK
c’ a c’ a c’ a

Theorem (MS 2003 for A = B = C, Muhly-Solel 2005)
(E°F)Y = FFO°F.
No time: Recall ¢: B3(E) — B3(F) ~ F=EQ®°Fy.

One may show: (Fy)" = Cga(g)(B(E© G,9F OL).
~> PS (E/) from Eg—semigroups a la Arveson.  (MS 2003, 2005a)



More exercises

» (€, &, 1) a measure space and E a Hilbert 8—module.
» L2(Q,E) = L3(Q) ® E := L2(Q)SE (

Exercise

> Show that (2(¢*) 2 {(Xn): X € £, T IIXp? < oo.
(Thatis, L? > L2 but not always L? = L2

Bochner Bochner )

» Show that not every element in L2( [0,1], L=]0, 1])
can be represented as a function [0, 1] — L*[0, 1].

Exercise
» BA(E) 0idr C BA(E O F). (= B3(E) if gF is faithful.)
> idg @B3PI(F) = (B3(E) ©idg)’. (= B2PI(F) if E is full.)
» Efull. Then xoy=x0y forallxeE = y=y'.



More exercises
Exercise (MS-Sumesh 2012 (preprint))

» Forallx € E and0 <« < 1 3! x, € xC*(|x|) such that

Xq |X|* = x. (Corollary: E = EB = K(E)E. What about AE ?)
> Ixoy|l = inf{||X’|| i:x oy = x@y}. (Hint: a — 1.)
> 11X xi 0 yill = inf{IX Y7 - X0 YT = ¥ xi 0 yi).

~» Blecher 1997: Tensor product=(amalgamated) Haagerup
tensor product (completely isomorphic). (~ universal property.)

(Actually, last exercise:
Exercise (MS 2005a)

View G and H as correspondences over C = C' = B(C) and
convince yourself that(H® G) = G’ @ H'.

)



More exercises

Exercise (Reducing more statements to linking algebras)
Formulate the following results for vN-modules and and reduce
their proofs to the known statements on vN-algebras:

» Polar decomposition.

» The Kaplansky density theorem.
Let Eg and F¢c be vN-modules. Let E be strongly full.

» Amap u: E — F extends as normal homomorphism acting
block-wise between the linking vN-algebras iff u is a c—weak
ternary homomorphism.

» A block-wise homomorphism between the linking vN-algebras
is normal iff its to one (hence. all) of the corners is c—weak.



More exercises

Exercise (vN-modules and representations of vN—algebras
(MS 2009 (preprint 2004))

E c B(G, H) vN-module frequently given by (H, p’).
» There exists a , that is, partial isometries (e;) in E such
that }’; eje; = idg.
» Corollary: E = @ .,piB c 875 = C#S&°8.
Infer form this the forp’.
Now let E be strongly full (& p’ faithful).

> dn such that E™ > Ewith (&,&) = 1. (Hint: QONB for E*!)
» dnsuchthat E" = B%. (Hint: E = B®pB~> E® = what?)
» Use this to show that:

» dn such thatp’ ® id,, ~ idg ®id,,.

» vN-algebras A and B are (vN-)Morita equivalent <

3 faithful normal representations with isomorphic commutants
< 3% such that A &° B(H) = B&° B(H).



Thank you!
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