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I Hilbert modules are ...
I ... a generalization of Hilbert spaces (replacing C by B).
I ... a generalization of C∗–algebras (better: right ideals).
I ... subsets of C∗–algebras.

I Hilbert bimodules (or correspondences) are ...
I ... powerful functors that, under tensor product, transform

given right or left modules into new ones.

I Ba(E), the algebra of adjointable operators on EB,
is a C∗ or von Neumann algebra ...
I ... capturing (almost) all the simplicity of B(H).
I ... being still sufficiently general to treat many, many problems.

I These things occur ...
I ... from dynamical maps (CP-maps, endomorphisms) and

dilation theory.
I ... in representation theory.
I ... in classification of C∗ (and von Neumann) algebras.
I ... and, and, and ...



An advice:
I Don’t study them (too much) for their own sake;
I study them to solve your problems!
I Problems will guide you to what are interesting questions

about Hilbert modules.
I Still, don’t hesitate to study them if you do have a problem

where Hilbert modules do occur!

Examples:
I Stinespring construction versus GNS-construction for

CP-maps.)
I Tensor product of Connes correspondences versus tensor

product of von Neumann correspondences.
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A complex vector space H with a sesquilinear map
〈•, •〉 : H × H → C is a:

I Semi-Hilbert space if 〈x, x〉 ≥ 0.
I Pre-Hilbert space if 〈x, x〉 = 0⇒ x = 0.
I Hilbert space if it is complete wrt the norm ‖x‖ :=

√
〈x, x〉.

Exercise

Prove that 〈x, y〉 = 〈y, x〉. Is this so for real semi-Hilbert spaces?

a : G → H is adjointable if ∃a∗ : H → G with 〈ax, y〉 = 〈x, a∗y〉.

I L(G,H) := linear maps a : G → H.
I La(G,H):= adjointable maps a : G → H.
I B(G,H) := bounded linear maps a : G → H.
I Ba(G,H):= bounded adjointable maps a : G → H.

Exercise

Not two of the spaces L(H), La(H), B(H), and Ba(H) are equal, if
H is not complete.



Two fundamental results
Cauchy-Schwarz inequality (semi!): 〈x, y〉〈y, x〉 ≤ 〈y, y〉〈x, x〉.
I Seminorm ‖•‖. ({ quotients. Also GNS!)
I ‖x‖ = sup‖y‖≤1 |〈y, x〉|. ({ Ba(H) is (pre-)C∗–algebra.)
I 〈•, •〉 continuous. ({ completion.)

Self-duality (Hilbert!): f ∈ B(H,C) ⇒ ∃(!)y ∈ H : f = 〈y, •〉.
I B(G,H) = Ba(G,H) (= La(G,H)).
I G Hilbert subspace of H ⇒ p = p∗ = p2 ∈ B(H) : pH = G.
I G subspace of Hilbert H ⇒ G = G⊥⊥ and H = G⊥⊥ ⊕ G⊥.
I Hilbert spaces have ONBs.

Exercise
I For p with pH = G, is it necessary that H is Hilbert?
I G,H pre-Hilbert. span S = G, span T = H. Suppose

a : S → H and a∗ : T → G with 〈as, t〉 = 〈s, a∗t〉.
Then a and a∗ extend as mutually adjoint elements

a ∈ La(G,H) and a∗ ∈ La(H,G).



Let B denote C∗–algebra. A right(!!) B–module E (often
indicated as EB) with a sesquilinear map 〈•, •〉 : E × E → B is a:

I Semi-Hilbert B–module if 〈x, x〉 ≥ 0 and 〈x, yb〉 = 〈x, y〉b.
I Pre-Hilbert B–module if 〈x, x〉 = 0⇒ x = 0.
I Hilbert B–module if complete wrt the norm ‖x‖ :=

√
‖〈x, x〉‖.

Exercise

Prove that 〈x, y〉 = 〈y, x〉∗.

a : EB → FB is adjointable if ∃a∗ : F → E with 〈ax, y〉 = 〈x, a∗y〉.

I Lr(E,F) := right linear maps a : E → F .
I La(E,F) := adjointable maps a : E → F .
I Br(E,F) := right linear bounded maps a : E → F .
I Ba(E,F) := bounded adjointable maps a : E → F .

Exercise
I a ∈ La(E,F) is right linear and closeable, and a∗ is unique.
I Repeat exercise on B–spanning subsets span SB = E.



Examples:
I A Hilbert space is a Hilbert C–module.
I B with 〈b , b ′〉 := b∗b ′.
I More generally, each closed right ideal of B.
I Direct sum

⊕
i Ei completion of

⊕
i
Ei with 〈x, y〉 :=

∑
i〈xi , yi〉.

(vNm: There are no others than direct sums of right ideals.)
Special case: En = Cn ⊗ E. (Here, n = dimCn.)

I Closed left ideal L in A. Then L is a Hilbert module over the
heriditary subalgebra B := span L∗L of A.

I E∗ := {x∗ := 〈x, •〉 : x ∈ E} ⊂ Ba(E,B). (Find their adjoints!)
E∗ is Hilbert K(E)–module,

where K(E) := span{xy∗ : x, y ∈ E} ⊂ Ba(E).
Note: E is self-dual if E∗ = Br(E,B).
Ideals are rarely self-dual. (Say when! { examples.)

Exercise
I B unital: E not self-dual, then Br(B ⊕ E) , Ba(B ⊕ E)

I Is the opposite true? (E self-dual⇒ Br(E) = Ba(E)?)



We see: HM behave to quite an extent like pre-HS. Fortunately:

Cauchy-Schwarz inequality (semi!): 〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖ 〈x, x〉.

Proof: As for (semi-)Hilbert spaces.
I For 〈y, y〉 , 0, take z = ‖〈y, y〉‖2 x − y〈y, x〉 and use 〈z, z〉 ≥ 0.

(You may need the C∗–inequality a∗bb∗a ≤ ‖bb∗‖ a∗a.)
I What about 〈y, y〉 = 0 = 〈x, x〉? �

Consequences:
I Seminorm ‖•‖. ({ quotients. Also GNS!)
I ‖x‖ = sup‖y‖≤1 ‖〈y, x〉‖. ({ Ba(E) is (pre-)C∗–algebra.)
I 〈•, •〉 continuous. ({ completion.)

Attention: No problem pre-HM over pre-C∗.
However, when completing E complete also B.

Exercise (1st part accessible, 2nd part not exactly easy)

I
⊕

i Ei =
{
(xi) :

∑
i〈xi , xi〉 exists

}
. (Hint: Why here?)

I B unital. Can you identify Br
(
B∞,B

)
?



From now: Everything completed. (Unless, ...)

Exercise

Ba
(
B

E

)
=

(
Ba (B) Ba (E,B)

Ba (B,E) Ba (E)

)
⊃

(
B E∗

E Ba (E)

)︸ ︷︷ ︸
(extended)

⊃
(
B E∗

E K(E)

)
= K

(
B

E

)︸            ︷︷            ︸
linking algebra

What if 1 ∈ B?

Corollary: xx∗ ≥ 0 in K
(
B

E

)
, hence, in K(E) ⊂ K

(
B

E

)
.

Reduced linking algebra K
(
BE
E

)
, with range ideal BE := span〈E,E〉.

E is full if BE = B.

Note: BE ideal in A { E is Hilbert A–module.
Consequently: K(E) ideal in A { E∗ is Hilbert A–module.

Exercise
I Mn(B) ⊂ B(Bn) is C∗–algebra. The row space En := ((E∗)n)∗

is Hilbert Mn(B)–module with 〈Xn,Yn〉 = (〈xi , yj〉)i,j

({ (〈xi , xj〉)i,j ≥ 0 in Mn(B)!) and Ba(En) = Ba(E).
I Do the same for (Em)n = (En)m =: Mn,m(E).



Exercise
I A double centralizer of a C∗–algebra B is pair (L ,R) of maps

on B such that bL(b ′) = R(b)b ′. Show Ba(B) = M(B)
where M(B) :=

{
(L ,R)

}
is the multiplier algebra.

I (Can you characterize La(B) and Ba(B) when B is only pre?)
I Show Ba(E) = Ba(K(E)).

Corollary (Kasparov 1980)

Ba(E) = M(K(E))

I Strict topology: ‖•k‖ , ‖k•‖ with k ∈ K(E).
I ∗–Strong topology: ‖•x‖ , ‖x∗•‖ with x ∈ E.

Exercise

Strict and ∗–strong topology coincide on bounded subsets.

I Substitute for normality. Depends on E.
I Recognizing A as Ba(E) { equipping A with a “good”

topology.



A correspondence from A to B (or a Hilbert A–B–bimodule) E,
denoted frequently AEB, is:
I A Hilbert B–module E.
I An A–B–bimodule such that the left action defines a

nondegenerate(!) (∗–)homomorphism A → Ba(E).

Example (Paschke’s GNS-construction for CP-maps, 1973(!))

I A, B unital. (In particular, A!)
I T : A → B a CP-map, that is,

∑
i,j b∗i T(a∗i aj)bj ≥ 0.

I { semiinner product on A⊗ B

〈a ⊗ b , a′ ⊗ b ′〉 := b∗T(a∗a′)b ′.

I Quotient N := {x : 〈x, x〉 = 0} and complete { AEB. (CSI!)
I ξ := 1 ⊗ 1 + N fulfills 〈ξ, aξ〉 = T(a) and spanAξB = E.

Example

Unital endomorphism ϑ of B ⇔ ϑB (that is, b .x = ϑ(b)x).



I Let AEB and BFC.
I On E ⊗ F define semiinner product by〈

x ⊗ y, x′ ⊗ y′
〉

:=
〈
y, 〈x, x′〉y′

〉
.

Is this positive?
I 0 ≤ 〈x, x〉 = b∗b {

〈x ⊗ y, x ⊗ y〉 = 〈y, 〈x, x〉y〉 = 〈y, b∗by〉 = 〈by, by〉 ≥ 0.

I For
∑

i xi ⊗ yi put Xn =
(
x1, . . . , xn

)
∈ En and Yn =


y1
.
.
.

yn

 ∈ Fn.

I Then 〈
∑

i xi ⊗ yi ,
∑

j xj ⊗ yj〉 = 〈Xn ⊗ Yn,Xn ⊗ Yn〉 ≥ 0.

Definition (Rieffel 1974a(?))

The tensor product of E and F is the unique AE � FC generated by
x � y subject to〈

x � y, x′ � y′
〉

=
〈
y, 〈x, x′〉y′

〉
, a(x � y) = (ax) � y.

Exercise

Show that Mn,`(E) �M`,m(F) = Mn,m(E � F).



Example (Bhat-MS 2000)

I (E, ξ) = GNS of T : A → B and (F , ζ) = GNS of S : B → C.
I Then 〈ξ � ζ, aξ � ζ〉 = 〈ζ, 〈ξ, aξ〉ζ〉 = S ◦ T(a).
I So, GNS-(S ◦ T) = (spanAξ � ζC , ξ � ζ).

Gives rise to product systems from CP-semigroups and units.

Example (Rieffel 1974b, Murphy 1997, MS 2000)

I EB and BGC (that is, G a representation space of B).
I H := E � G { x � idG ∈ B(G,H) and a � idG ∈ B(H).
I B ⊂ B(G) { E ⊂ B(G,H) and Ba(E) ⊂ B(H).
I AEB { ρ : A → Ba(E)→ B(H) Stinespring representation.
I Indeed, (E, ξ) GNS of T : A → B ⊂ B(G) { ξ ∈ B(G,H) with

ξ∗ρ(a)ξ = T(a).

Note: With AEB, BFC and C ⊂ B(L), obviously,
(x � y) � idL = (x � idF�L )(y � idL ) ∈ B(L ,E � F � L).



Recall: EB { E∗ is BE∗
K(E)

(or BE E∗
Ba(E)

).

Exercise

Show E∗ � E � BE and E � E∗ � K(E), canonically.

Definition (Rieffel 1974b, MS 2009 (preprint))

A and B are (strongly) Morita equivalent if ∃ AMB and BNA
such that

AM � NA � AAA, BN �MB � BBB.

M is a Morita equivalence from A to B, and N its inverse.

I M is full and faithful (=left action faithful).
I Morita equivalence is an equivalence relation.

Theorem (MS 2009 (preprint))

A full AMB is a Morita equivalence if and only if the left action
defines an isomorphism onto K(E). ({ “standard” definition.)



I ϑ : Ba(EB)→ Ba(FC) a unital strict homomorphism.
I Strict=strictly continuous on bounded subsets.
I For us: ϑ(EE∗)F is total in F .

(Use a bounded approximate unit for K(E) in span EE∗.)

With Fϑ := E∗ � ϑF , we get the chain of isomorphisms

F = spanϑ(EE∗)F = K(E) � ϑF = E � E∗ � ϑF = E � Fϑ.

Theorem (Muhly-MS-Solel 2006 (preprint 2004))

u : x′ � (x∗ � y) 7−→ ϑ(x′x∗)y

defines a unitary E � Fϑ → F such that ϑ(a) = u(a � idFϑ)u∗.

Exercise

If E is full, then Fϑ is unique. (Hint: u ∈ Ba,bil(E � Fϑ, ϑF). If
(F ′ϑ, u

′) is another pair, consider idE∗ �(u∗u′).)

Exercise

Do the same for normal ϑ : B(G)→ B(H). (Hilbert spaces.)



E0-Semigroups and product systems

I E full.
I ϑt : Ba(E)→ Ba(E) a strict E0–semigroup.
I Et := E∗ �t E with vt : x � (y∗ �t z) 7→ ϑt (xy∗)z

so that ϑt = vt (• � idt )v∗t .

Exercise (MS 2002 and 2009 (preprint 2004))

The Et form a product system E�, that is:
I E0 = E∗ �0 E = E∗ � E = B.
I Es�Et = (E∗�sE)�(E∗�t E) = E∗�s (ϑt E) = E∗�s+t E = Es+t

via bilinear

us,t : (x∗ �s x′) � (y∗ �t y′) 7−→ x∗ �s+t ϑt (x′y∗)y′.

I The product xsyt := us,t (xs � yt ) is associative.
I E0 3 x0 = b ∈ B { x0yt = byt and ytx0 = ytb.



Recall: K
(
B

E

)
=

(
B E∗

E K(E)

)
⊂

(
B E∗

E Ba (E)

)
⊂ Ba

(
B

E

)

MS 2000 (preprint 1997): A ∗–algebra A is a matrix ∗–algebra if

A =
2⊕

i,j=1

Ai,j =

(
A1,1 A1,2

A2,1 A2,2

)

such that Ai,kA`,j ⊂ δk ,`Ai,j and A∗i,j ⊂ Aj,i .

Similarly, for (pre-)C∗–, W∗–, and von Neumann algebras.

Moreover, if A is a matrix (pre-)C∗–algebra (etc.), then:
I Ai,i is (pre-)C∗–algebra.
I Ai,j is (pre-)Hilbert Aj,j–module with 〈a, a′〉 = a∗a′.
I Action of Ai,i on Ai,j turns it into (pre-)correspondence from
Ai,i to Aj,j . (Note: Ai,i ⊃ F(Ai,j).)



Proposition

Let A = (Ai,j) be a matrix pre-C∗–algebra. Then the subspace
B2,1 of A2,1 is the 21–corner of a matrix pre-C∗–algebra B ⊂ A
iff one of the following (obviously equivalent) conditions holds:
I B2,1B

∗
2,1B2,1 ⊂ B2,1.

I B2,1(spanB∗2,1B2,1) ⊂ B2,1.

More precisely, in either case, B1,1 := spanB∗2,1B2,1 and
B2,2 := spanB2,1B

∗
2,1 are ∗–subalgebras of A1,1 and A2,2 and with

B1,2 := B∗2,1, the ∗–subalgebra of A generated by B2,1 is the
matrix ∗–algebra (Bi,j).

Note: The ternary product (x, y, z) 7→ x〈y, z〉 = xy∗z plays a role.

Abbaspour Tabadkan-MS 2007: For u : EBE → FC, tfae:
I u is a generalized isometry, that is, ∃(!) homomorphism
ϕ : B → C such that 〈ux, uy〉 = ϕ(〈x, y〉).

I u is a ternary homomorphism, that is, u is linear and
u(xy∗z) = (ux)(uy)∗(uz).



Exercise

If A = (Ai,j) ⊂ B(H) nondegenerately, then H = H1 ⊕ H2

where Hi = spanAi,iH, and
Ai,j ⊂ B(Hj ,Hi) ⊂ B(H) =

(
B(H1) B(H2 ,H1)

B(H1 ,H2) B(H2)

)
.

Definition (Murphy 1997, MS 2006)

Let B ⊂ B(G) a concrete C∗–algebra. The subspace E ⊂ B(G,H)
is a concrete Hilbert (resp. von Neumann) B–module if:

1. EB ⊂ E.

2. E∗E ⊂ B.

3. span EG = H.

4. E = E (resp. E
s

= E).

Definition (Bikram-Mukherjee-Srinivasan-Sunder 2012)

E = spans E ⊂ B(G,H) is a von Neumann corner if EE∗E ⊂ E.



Recall: EB and B ⊂ B(G) { E ⊂ B(G,H) and Ba(E) ⊂ B(H)
with H = E � G. (E conc. module, { H � E � G, xg 7→ x � g.)

Definition (MS 2000 (preprint 1997))

A (pre-)Hilbert module E over a von Neumann algebra B ⊂ B(G)
is a von Neumann B–module if the extended linking algebra is a
matrix von Neumann algebra(

B E∗

E Ba (E)

)
⊂ B

(
G
H

)
=

(
B(G) B(H,G)

B(G,H) B(H)

)

or, equivalently, if E = E
s

in B(G,H).

Like Ba(E) = Ba(E) � idG ⊂ B(H), there is the commutant lifting
ρ′ : B′ = Bbil(G)→ idE �B

′.

Exercise (Double commutant theorem vor vN-modules)

(Pre-)Hilbert module E over a von Neumann algebra B ⊂ B(G):(
B E∗

E Ba (E)

)′′
=

{(
b′

ρ′(b′)

)
: b ′ ∈ B′

}′
=

(
B CB′ (B(H,G))

CB′ (B(G,H)) ρ′(B′)′

)
,

where for BVB we set CB(V) = {x ∈ V : bx = xb∀b ∈ B}.



Exercise

Why is ρ′ normal? (Below: Where do we use that ρ′ is normal?)

Lemma (Muhly-Solel 2002)

ρ′ : B′
normal
−−−−−→

unital
B(H) representation { span CB′(B(G,H))G = H.

Proof: Define the vN-algebra A′ :=
{(

b′

ρ′(b′)

)
: b ′ ∈ B′

}
.

We know its commutant is A := (A′)′ =
(

B CB′ (B(H,G))
CB′ (B(G,H)) ρ′(B′)′

)
.

Let P′ ∈ A′ the projection onto H0 := spanAG.
Since A′ � B′, there is unique p′ ∈ B′ such that P′ =

(
p′

ρ′(p′)

)
.

H0 ⊃ G { p′ = 1 { H0 = G ⊕ H.
Hence, span CB′(B(G,H))G = ρ′(p′)H0 = H. �

Corollary (MS 2003, 2006)

There is a bijective functor between the categories
cvNB 3 (H,E) and B′cvN 3 (H, ρ′).



Theorem (Rieffel 1974b, MS 2000 (preprint 1997), 2005b)

Von Neumann modules are self-dual (=W∗–module!).

All (known) proofs have two parts:
I Φ ∈ Br(E,B) { Φ � idG ∈ B(E � G,G). (Boundedness!)

I Rieffel 1974b: Banach modules.
I MS 2000, 2005b: Cyclic decomposition of G and polar

decomposition in E.
I Φ � idG ∈ E∗ ⊂ B(H,G).

I MS 2000: QONBs.
I MS 2005b (Rieffel 1974b): Φ ∈ CB′(B(H,G)) = E.
I Bikram-Mukherjee-Srinivasan-Sunder 2012:

(Only E strongly full, that is, spans
〈E,E〉 = B.) ΦE ⊂ B so

Φ ∈ spans
ΦEE∗ ⊂ spans

BE∗ = E∗. �

Exercise (MS 2000 (preprint 1997))

Formulate and prove all the pleasant properties of Hilbert spaces
that we listed in the beginning.



A (concrete) von Neumann correspondence from a vN-algebra
A ⊂ B(K) to a vN-algebra B ⊂ B(G) is a (concrete) von Neumann
B–module and an A–B–correspondence such that the Stinespring
representation ρ : A → Ba(E) ⊂ B(H) is normal.

Note: [ρ′(B′), ρ(A)] = {0}.

Corollary (MS 2003, 2006 (Muhly-Solel 2005 for A , B))

There is a bijective functor between the categories
AcvNB 3 (H,E) and B′,AcvN 3 (H, ρ′, ρ).
The chain (H,E) ↔ (H, ρ′, ρ) ≡ (H, ρ, ρ′) ↔ (H,E′)
is a bijective functor, the commutant, between the categories
AcvNB 3 (H,E) and B′cvNA′ 3 (H,E′).

Note: CB(E) = E ∩ E′ = CB′(E′).

Note: If B is in standard representation, then B′ � Bop . So, H
becomes a normal A–B–module. (Connes 1980.)



Let A ⊂ B(K), B ⊂ B(G), C ⊂ B(L) and AEB, BFC. (All vN.)

Tensor product: (Note: (E � F) � L = E � (F � L).)
I Compute E � F and take E �̄s F := E � F

s
⊂ B(L ,E � F � L).

I Or: Compute E �̄s F := spans(E � idF�L )(F � idL ).
(Cf. tensor product of Connes correspondences.)

Easy: Left action is normal!

There is an incredible lot of representations acting on E � F � L !

E
a
� F � L

c′
= E

a
� (F � L

c′
) = E

a
� (F ′

c′
� G)

� F ′
c′
� (E

a
� G) = F ′

c′
� (E′ � K

a
) = F ′

c′
� E′ � K

a

Theorem (MS 2003 for A = B = C, Muhly-Solel 2005)

(E �̄s F)′ � F ′ �̄s E′.

No time: Recall ϑ : Ba(E)→ Ba(F) { F = E �̄s Fϑ.
One may show: (Fϑ)′ � CBa(E)(B(E � G, ϑF � L).
{ PS (E′t ) from E0–semigroups à la Arveson. (MS 2003, 2005a)



More exercises
I (Ω,F, µ) a measure space and E a Hilbert B–module.

I L2(Ω,E) := L2(Ω) ⊗ E := L2(Ω)⊗E (external tensor product.)

Exercise

I Show that `2(`∞) )
{
(xn) : xn ∈ `

∞,
∑
‖xn‖

2 < ∞
}
.

(That is, L2 ⊃ L2
Bochner but not always L2 = L2

Bochner .)

I Show that not every element in L2
(

[0, 1] , L∞[0, 1]
)

can be represented as a function [0, 1]→ L∞[0, 1].

Exercise

I Ba(E) � idF ⊂ Ba(E � F). (� Ba(E) if BFC is faithful.)
I idE �B

a,bil(F) = (Ba(E) � idF )′. (� Ba,bil(F) if E is full.)
I E full. Then x � y = x � y′ for all x ∈ E ⇒ y = y′.



More exercises

Exercise (MS-Sumesh 2012 (preprint))

I For all x ∈ E and 0 < α < 1 ∃! xα ∈ xC∗(|x |) such that
xα |x |α = x. (Corollary: E = EB = K(E)E. What about AE?)

I ‖x � y‖ = inf
{
‖x′‖ ‖y′‖ : x′ � y′ = x � y

}
. (Hint: α→ 1.)

I ‖
∑

i xi � yi‖ = inf
{
‖Xn‖ ‖Yn‖ : Xn � Yn =

∑
i xi � yi

}
.

{ Blecher 1997: Tensor product=(amalgamated) Haagerup
tensor product (completely isomorphic). ({ universal property.)

(Actually, last exercise:

Exercise (MS 2005a)

View G and H as correspondences over C = C′ = B(C) and
convince yourself that (H ⊗ G)′ = G′ ⊗ H′.

)



More exercises

Exercise (Reducing more statements to linking algebras)

Formulate the following results for vN-modules and and reduce
their proofs to the known statements on vN-algebras:
I Polar decomposition.
I The Kaplansky density theorem.

Let EB and FC be vN-modules. Let E be strongly full.
I A map u : E → F extends as normal homomorphism acting

block-wise between the linking vN-algebras iff u is a σ–weak
ternary homomorphism.

I A block-wise homomorphism between the linking vN-algebras
is normal iff its to one (hence. all) of the corners is σ–weak.



More exercises
Exercise (vN-modules and representations of vN–algebras
(MS 2009 (preprint 2004))

E ⊂ B(G,H) vN-module frequently given by (H, ρ′).
I There exists a QONB, that is, partial isometries (ei) in E such

that
∑

i eie∗i = idE .

I Corollary: E =
⊕ s

i piB ⊂ B
#S

s
= C#S ⊗̄

s
B.

Infer form this the amplification-induction theorem for ρ′.

Now let E be strongly full (⇔ ρ′ faithful).

I ∃n such that En
s
3 ξ with 〈ξ, ξ〉 = 1. (Hint: QONB for E∗!)

I ∃n such that En
s
� Bn

s
. (Hint: E = B ⊕ pB{ E∞

s
� what?)

I Use this to show that:
I ∃n such that ρ′ ⊗ idn ' idB′ ⊗ idn.
I vN-algebras A and B are (vN-)Morita equivalent⇐⇒
∃ faithful normal representations with isomorphic commutants
⇐⇒ ∃H such that A ⊗̄s B(H) � B ⊗̄s B(H).



Thank you!
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