
INDEPENDENCE AND LÉVY PROCESSES IN QUANTUM
PROBABILITY

UWE FRANZ

Abstract. This manuscript provides an introduction of the notion of inde-
pendence in quantum probability and the theory of quantum stochastic pro-
cesses with independent and stationary increments.

Preliminary Version

Contents

1. Introduction 2
2. Infinite Divisibility in Classical Probability 3
2.1. Stochastic Independence 3
2.2. Convolution 3
2.3. Infinite divisibility, continuous convolutions semigroups, and Lévy
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1. Introduction

Quantum probability is a generalization of both classical probability theory and
quantum mechanics that allows to describe the probabilistic aspects of quantum
mechanics. This generalization is formulated in two steps. First the theory is
reformulated in terms algebras of functions on probability spaces. So the notion
of a probability space (Ω,R, P ) are replaced by the pair (L∞(Ω), E(·) =

∫
Ω
·dP )

consisting of the commutative von Neumann algebra of bounded random variables
and the expectation functional. Then the commutativity condition is dropped.
In this way we arrive at the notion of a (von Neumann) algebraic probability
space (N,Φ) consisting of a von Neumann algebra N and a normal (faithful
tracial) state Φ. As we have seen this includes classical probability spaces in
the form (L∞(Ω), E), it also includes quantum mechanical systems modelled by
a Hilbert space H and a pure state ψ ∈ H (or a mixed state ρ ∈ S(H)), if we
take N = B(H) and Φ the state defined by Φ(X) = 〈ψ,Xψ〉 (or Φ(X) = tr(ρX)
for X ∈ B(H). Note that in this course we shall relax the conditions on N
and Φ and work with involutive algebras and positive normalised functionals, i.e.
*-algebraic probability spaces.

A stricting feature of quantum probability (also called noncommutative prob-
ability) is the existence of several notions of independence. This is the starting
point of this course, which intends to give an introduction to the theory of quan-
tum stochastic processes with independent increments.
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2. Infinite Divisibility in Classical Probability

Let us first recall some definitions and facts about infinite divisibility and Lévy
processes in classical probability. See also [Sko91, Ber98, Sat99, App04, App05,
Kyp07].

2.1. Stochastic Independence. Recall that two random variablesX1 : (Ω,F , P )→
(E1, E1) and X2 : (Ω,F , P ) → (E2, E2) are called independent if their joint law
P(X1,X2) is equal to the product of their marginal laws, i.e.

P(X1,X2) = PX1 ⊗ PX2 .

This means that

P (X1 ∈ A1, X2 ∈ A2) = P (X1 ∈ A1)P (X2 ∈ A2)

for all A1 ∈ E1,A2 ∈ E2.

2.2. Convolution. Let G be a topological semigroup with neutral element ele-
ment e and multiplication m : G×G→ G. Then we can define the convolution
product µ1?µ2 of two probability measures µ1, µ2 as the image measurem∗(µ1⊗µ2)
of their product µ1 ⊗ µ2, i.e.

(µ1 ? µ2)(A) = (µ1 ⊗ µ2)({(g1, g2) ∈ G×G; g1g2 ∈ A})

for A ∈ B(G).
If X1, X2 : (Ω,F , P )→ (G,B(G)) are two independent random variables with

distributions PX1 = µ1, PX2 = µ2, then their product has distribution

PX1X2 = m∗(PX1 ⊗ PX2) = PX1 ? PX2 = µ1 ? µ2.

2.3. Infinite divisibility, continuous convolutions semigroups, and Lévy
processes.

Definition 2.1. A probability measure µ on a topological semigroup G is called
infinitely divisible, if for every integer n ≥ 1 there exists a probability measure
µn such that

µ = µn ? · · · ? µn︸ ︷︷ ︸ .
n times

Definition 2.2. A family (µt)t≥0 of probability measure on a topological semi-
group is called a continuous convolution semigroup (ccs) if

(i) limt↘0 µt = δe weakly, i.e. limt↘0

∫
G
fµt = f(e) for all f ∈ Cb(G).

(ii) µs ? µt = µs+t for all s, t ≥ 0.

Definition 2.3. A probability measure µ is called embeddable into a continuous
convolution semigroup if there exists a continuous convolution semigroup (µt)t≥0

such that µ = µ1.
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Clearly, a probability measure that is embeddable into a continuous convolution
semigroup is also infinitely divisible. On many groups, e.g., (Rd,+) the converse
is also true, but there exist also groups where the converse does not hold.

Definition 2.4. A stochastic process (Xst)0≤s≤t with values in a topological
semigroup is called a (right) Lévy process, if

(i) (increment property) Xss = e and XstXtu = Xsu a.s. for all 0 ≤ s ≤ t ≤ u;
(ii) (independence) the increments Xs1t1 , . . . , Xsntn are independent for all

n ≥ 1 and all s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn;
(iii) (stationarity) PXst = PXs+h,t+h for all h > 0 and all 0 ≤ s ≤ t, i.e. the law

of Xst depends only on t− s;
(iv) (weak continuity) (Xst)0≤s≤t is stochastically in probability, i.e. Xst

t↘s−→
Xss in probability.

We define Xt = X0t. If G is a group, then the increments can be recovered
from (Xt)t≥0 by Xst = X−1

0s X0t.
A stochastic process (Xt)t≥0 indexed by R+ and with values in a group is called

a Lévy processes, if its increment processes (Xst)0≤s≤t with Xst = X−1
s Xt is Lévy

process in the sense of Definition 2.4.

Proposition 2.5. If (Xst) is a Lévy process with values in a topological semi-
group G, then its marginal distributions µt = PX0t form a continuous convolution
semigroup.

Exercise 2.6. Prove this Proposition.

Conversely, given a continuous convolutions semigroup (µt)t≥0 of probability
measures on a topological semigroup G, one can construct a Lévy process with
values in G whose marginals are equal to the convolution semigroup (µt)t≥0.

2.4. The De Finetti-Lévy-Khintchine formula on (R+,+). Let us start
with a description of infinitely divisible probability measures on the semigroup
(R+,+).

Theorem 2.7. A probability measure µ on R+ is infinitely divisible if and only
if there exist b ≥ 0 and ν a measure on R+ with

∫∞
0

1 ∧ xdν(x) < ∞ such that
the Laplace transform of µ has the form

ψµ(λ) =

∫ ∞
0

e−λxdµ(x) = Φ(λ)

for all λ ≥ 0, with

Φ(λ) = bλ+

∫ ∞
0

(1− e−λx)dν(x).

The pair (b, ν) is uniquely determined by µ.

Proof. See [Ber98]. �
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The pair (b, ν) is called the characteristics or the characteristic pair of µ.

Corollary 2.8. Every infinitely divisible probability measure on R+ is embeddable
into a ccs.

2.5. Lévy-Khintchine formulas on cones. We also have the following gener-
alisation for proper closed cones in finite-dimensional vector spaces.

Recall that a non-empty subset K in a real or complex vector space is called a
cone if the following two conditions are satisfied,

(i) x1, x2 ∈ K implies x1 + x2 ∈ K,
(ii) λ ≥ 0, x ∈ K implies λx ∈ K.

A cone is called proper if K 6= {0} and K ∩ (−K) = {0}, i.e. K does not contain
a straight line.

Theorem 2.9. [Sko91] Let K ⊂ Rd be a proper closed cone and µ a probability
measure on K. Then µ is infinitely divisible if and only if there exist b ∈ K and ν
a measure on K such that

∫
K

1∧ ||x|| dν(x) <∞ such that the Fourier transform
of µ has the form

µ̂(y) =

∫
K

ei〈y,x〉dµ(x) = exp

(
i〈y, b〉+

∫
K

(ei〈y,x〉 − 1)dν(x)

)
for y ∈ Rd.

In this case the Laplace transform is well-defined on the dual cone

K ′ = {y ∈ Rd : 〈y, x〉 ≥ 0∀x ∈ K}
and has the form

ψµ(y) = exp

(
−〈y, b〉 −

∫
K

(1− e−〈y,x〉)dν(x)

)
for y ∈ K ′.

2.6. The Lévy-Khintchine formula on (Rd,+).

Theorem 2.10. [Sat99, App04] A probability measure µ on Rd is infinitely di-
visible if and only if its Fourier transform is of the form

µ̂(u) =

∫
Rd
ei〈x,u〉dµ(x)(2.1)

exp

(
i〈b, u〉 − 1

2
〈u,Au〉+

∫
Rd−{0}

(ei〈u,y〉 − 1− i〈u, y〉1||y||<1)dν(y)

)
,

for all u ∈ Rd.
(b, A, ν) are called the characteristics of µ, they are uniquely determined by µ.

Corollary 2.11. Any infinitely divisible probability measure on Rd is embeddable
into a ccs.
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2.7. The Markov semigroup of a Lévy processes. Recall that Markov pro-
cesses indexed by R+ can be characterized — intuitively — as stochastic pro-
cesses (Xt)t≥0 for which for any t the past and the future w.r.t. t are independent
conditionally on Xt. Lévy processes are Markov processes, they are even Feller
processes, i.e. their Markov semigroup maps C0(G) to itself. The independence of
the increments allows for a simple description of their Markov semigroup (Tt)t≥0,

(Ttf)(g) = E
(
f(gXt)

)
=

∫
G

f(gg′)dPXt(g
′), g ∈ G,

for t ≥ 0, f ∈ C0(G).

2.8. Hunt’s formula. Let G be a Lie group with Lie algebra g.
To a Lévy process in G we have its Markov semigroup (Tt)t≥0 and its infini-

tesimal generator L. Hunt’s theorem describes Lévy processes in G in terms of
their generators.

Fix a basis (Xj, 1 ≤ j ≤ n) of g and define the dense linear manifold CL
2 (G)

by

CL
2 (G) = {f ∈ C0(G);XL

i (f) ∈ C0(G), XL
i X

L
j (f) ∈ C0(G) for all 1 ≤ i, j ≤ n}.

CL
2 (G) is a Banach space with respect to the norm

||f ||2,L = ||f ||+
n∑
i=1

||XL
i f ||+

n∑
j,k=1

||XL
j X

L
k f ||.

The space CR
2 (G) and the norms || · ||2,R are defined similarly. Note that the

smooth functions of compact support C∞c (G) ⊆ CL
2 (G) ∩ CR

2 (G).
There exist functions xi ∈ C∞c (G), 1 ≤ i ≤ n so that (x1, . . . , xn) are a system

of canonical co-ordinates for G at e.

Theorem 2.12 (Hunt’s theorem). Let X be a Lévy process in G with infinitesimal
generator L then

(1) CL
2 (G) ⊆ Dom(L).

(2) For each g ∈ G, f ∈ CL
2 (G),

Lf(g) = biXL
i f(g) + aijXL

i X
L
j f(g)

+

∫
G−{e}

(f(gh)− f(g)− yi(g)XL
i f(g))ν(dh),

where b = (b1, . . . bn) ∈ Rn, a = (aij) is a non-negative-definite, sym-
metric n× n real-valued matrix and ν is a Lévy measure on G− {e}.

Conversely, for any linear operator with such a representation there exists a Lévy
process (unique up to stochastic equivalence) with generator L.

Michael Skeide has given a C∗-algebraic proof of Hunt’s Theorem for compact
Lie groups in [Ske99].
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Exercise 2.13. Show how we can recover the Lévy-Khintchine formular for Rd

from Hunt’s Theorem.

3. Lévy Processes on Involutive Bialgebras

In this section we will give the definition of Lévy processes on involutive bial-
gebras, cf. Subsection 3.1, and develop their general theory.

In Subsection 3.2 we will begin to develop their basic theory. We will see that
the marginal distributions of a Lévy process form a convolution semigroup of
states and that we can associate a generator with a Lévy process on an involutive
bialgebra, that characterizes uniquely its distribution, like in classical probability.
By a GNS-type construction we can get a so-called Schürmann triple from the
generator.

This Schürmann triple can be used to obtain a realization of the process on a
symmetric Fock space. This realization can be found as the (unique) solution of
a quantum stochastic differential equation. It establishes the one-to-one corre-
spondence between Lévy processes, convolution semigroups of states, generators,
and Schürmann triples. We will not present the representation theorem here, but
refer to [Sch93, Chapter 2].

Finally, in Subsection 3.3, we look at several examples.
For more information on Lévy processes on involutive bialgebras, see also

[Sch93][Mey95, Chapter VII][FS99], [Fra06].

3.1. Definition of Lévy processes on involutive bialgebras. A quantum
probability space in the purely algebraic sense is a pair (A,Φ) consisting of a
unital ∗-algebra A and a state (i.e. a normalized positive linear functional) Φ on
A. Positivity in this purely algebraic context simply means Φ(a∗a) ≥ 0 for all
a ∈ A. A quantum random variable j over a quantum probability space (A,Φ)
on a ∗-algebra B is simply a ∗-algebra homomorphism j : B → A. A quantum
stochastic process is an indexed family of random variables (jt)t∈I . For a quantum
random variable j : B → A we will call ϕj = Φ ◦ j its distribution in the state Φ.
For a quantum stochastic process (jt)t∈I the functionals ϕt = Φ ◦ jt : B → C are
called marginal distributions. The joint distribution Φ ◦

(∐
t∈I jt

)
of a quantum

stochastic process is a functional on the free product
∐

t∈I B, see Section 6.

Two quantum stochastic processes
(
j

(1)
t : B → A1

)
t∈I

and
(
j

(2)
t : B → A2

)
t∈I

on B over (A1,Φ1) and (A2,Φ2) are called equivalent, if there joint distributions
coincide. This is the case, if and only if all their moments agree, i.e. if

Φ1

(
j

(1)
t1 (b1) · · · j(1)

tn (bn)
)

= Φ2

(
j

(2)
t1 (b1) · · · j(2)

tn (bn)
)

holds for all n ∈ N, t1, . . . , tn ∈ I and all b1, . . . , bn ∈ B.
The term ‘quantum stochastic process’ is sometimes also used for an indexed

family (Xt)t∈I of operators on a Hilbert space or more generally of elements
of a quantum probability space. We will reserve the name operator process for
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this. An operator process (Xt)t∈I ⊆ A (where A is a ∗-algebra of operators)
always defines a quantum stochastic process (jt : C〈a, a∗〉 → A)t∈I on the free
∗-algebra with one generator, if we set jt(a) = Xt and extend jt as a ∗-algebra
homomorphism. On the other hand operator processes can be obtained from
quantum stochastic processes (jt : B → A)t∈I by choosing an element x of the
algebra B and setting Xt = jt(x).

The notion of independence we use for Lévy processes on involutive bialgebras
is the so-called tensor or boson independence. In Section 6 we will see that other
interesting notions of independence exist.

Definition 3.1. Let (A,Φ) be a quantum probability space and B a ∗-algebra.
The quantum random variables j1, . . . , jn : B → A are called tensor or Bose
independent (w.r.t. the state Φ), if

(i) Φ
(
j1(b1) · · · jn(bn)

)
= Φ

(
j1(b1)

)
· · ·Φ

(
jn(bn)

)
for all b1, . . . , bn ∈ B, and

(ii) [jl(b1), jk(b2)] = 0 for all k 6= l and all b1, b2 ∈ B.

Recall that an involutive bialgebra (B,∆, ε) is a unital ∗-algebra B with two
unital ∗-homomorphisms ∆ : B → B ⊗ B, ε : B → C called coproduct or comulti-
plication and counit, satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity)

(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆ (counit property).

Let j1, j2 : B → A be two linear maps with values in some algebra A, then we
define their convolution j1 ? j2 by

j1 ? j2 = mA ◦ (j1 ⊗ j2) ◦∆.

Here mA : A⊗A → A denotes the multiplication of A, m(a⊗b) = ab for a, b ∈ A.
Using Sweedler’s notation ∆(b) = b(1) ⊗ b(2), this becomes (j1 ? j2)(b) =

j1(b(1)j2(b(2)). If j1 and j2 are two independent quantum random variables, then
j1 ?j2 is again a quantum random variable, i.e. a ∗-homomorphism. The fact that
we can compose quantum random variables allows us to define Lévy process, i.e.
processes with independent and stationary increments.

Example 3.2. Let (G, e) be a semigroup with identity e. We call a function
f : G → C representative, if there exists a finite-dimensional representation
π : G→Mn and vectors u, v ∈ Cn such that f(g) = 〈v, π(g)u〉 for all g ∈ G. The
algebra

R(G) = {f : G→ C a respresentative function}
is an involutive bialgebra with pointwise multiplication and conjugation, and the
coproduct ∆ : R(G) → R(G) ⊗ R(G) ∼= R(G × G) and counit ε : R(G) → C
defined by

∆f(g1, g2) = f(g1g2),

pour g1, g2 ∈ G and ε(f) = f(e).
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Definition 3.3. Let B be an involutive bialgebra. A quantum stochastic process
(jst)0≤s≤t on B over some quantum probability space (A,Φ) is called a Lévy
process, if the following four conditions are satisfied.

(1) (Increment property) We have

jrs ? jst = jrt for all 0 ≤ r ≤ s ≤ t,

jtt = ε1 for all 0 ≤ t,

i.e. jtt(b) = ε(b)1 for all b ∈ B, where 1 denotes the unit of A.
(2) (Independence of increments) The family (jst)0≤s≤t is independent, i.e. the

quantum random variables js1,t1 , . . . , jsntn are independent for all n ∈ N
and all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn.

(3) (Stationarity of increments) The distribution ϕst = Φ ◦ jst of jst depends
only on the difference t− s.

(4) (Weak continuity) The quantum random variables jst converge to jss in
distribution for t↘ s.

Exercise 3.4. Recall that an (involutive) Hopf algebra (B,∆, ε, S) is an (involu-
tive) bialgebra (B,∆, ε) equipped with a linear map called antipode S : B → B
satisfying

(3.1) S ? id = 1 ◦ ε = id ? S.

The antipode is unique, if it exists. Furthermore, it is an algebra and coalgebra
anti-homomorphism, i.e. it satisfies S(ab) = S(b)S(a) for all a, b ∈ B and (S ⊗
S) ◦ ∆ = τ ◦ ∆ ◦ S, where τ : B ⊗ B → B ⊗ B is the flip τ(a ⊗ b) = b ⊗ a. If
(B,∆, ε) is an involutive bialgebra and S : B → B a linear map satisfying (3.1),
then S satisfies also the relation

S ◦ ∗ ◦ S ◦ ∗ = id.

In particular, it follows that the antipode S of an involutive Hopf algebra is
invertible. This is not true for Hopf algebras in general.

Show that if (kt)t≥0 is any quantum stochastic process on an involutive Hopf
algebra, then the quantum stochastic process defined by

jst = mA ◦
(
(ks ◦ S)⊗ kt

)
◦∆,

for 0 ≤ s ≤ t, satisfies the increment property (1) in Definition 3.3. A one-
parameter stochastic process (kt)t≥0 on a Hopf ∗-algebraH is called a Lévy process
on H, if its increment process (jst)0≤s≤t with jst =

(
ks ◦ S) ⊗ kt) ◦ ∆ is a Lévy

process on H in the sense of Definition 3.3.

Let (jst)0≤s≤t be a Lévy process on some involutive bialgebra. We will denote
the marginal distributions of (jst)0≤s≤t by ϕt−s = Φ ◦ jst. Due to the stationarity
of the increments this is well defined.

Lemma 3.5. The marginal distributions (ϕt)t≥0 of a Lévy process on an involu-
tive bialgebra B form a convolution semigroup of states on B, i.e. they satisfy
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(1) ϕ0 = ε, ϕs ? ϕt = ϕs+t for all s, t ≥ 0, and limt↘0 ϕt(b) = ε(b) for all
b ∈ B, and

(2) ϕt(1) = 1, and ϕt(b
∗b) ≥ 0 for all t ≥ 0 and all b ∈ B.

Proof. ϕt = Φ◦j0t is clearly a state, since j0t is a ∗-homomorphism and Φ a state.
From the first condition in Definition 3.3 we get

ϕ0 = Φ ◦ j00 = Φ(1)ε = ε,

and

ϕs+t(b) = Φ
(
j0,s+t(b)

)
= Φ

(∑
j0s(b(1))js,s+t(b(2))

)
,

for b ∈ B, ∆(b) =
∑
b(1) ⊗ b(2). Using the independence of increments, we can

factorize this and get

ϕs+t(b) =
∑

Φ
(
j0s(b(1))

)
Φ
(
js,s+t(b(2))

)
=
∑

ϕs(b(1))ϕt(b(2))

= ϕs ⊗ ϕt
(
∆(b)

)
= ϕs ? ϕt(b)

for all ∈ B.
The continuity is an immediate consequence of the last condition in Definition

3.3. � �

Lemma 3.6. The convolution semigroup of states characterizes a Lévy process
on an involutive bialgebra up to equivalence.

Proof. This follows from the fact that the increment property and the indepen-
dence of increments allow to express all joint moments in terms of the marginals.
E.g., for 0 ≤ s ≤ t ≤ u ≤ v and a, b, c ∈ B, the moment Φ

(
jsu(a)jst(b)jsv(c)

)
becomes

Φ
(
jsu(a)jst(b)jsv(c)

)
= Φ

(
(jst ? jtu)(a)jst(b)(jst ? jtu ? juv)(c)

)
= Φ

(
jst(a(1))jtu(a(2))jst(b)jst(c(1))jtu(c(2))juv(c(3))

)
= Φ

(
jst(a(1)bc(1))jtu(a(2)c(2))juv(c(3))

)
= ϕt−s(a(1)bc(1))ϕu−t(a(2)c(2))ϕv−u(c(3)).

� �

It is possible to reconstruct process (jst)0≤s≤t from its convolution semigroup,
see [Sch93, Section 1.9] or [FS99, Section 4.5]. Therefore, we even have a one-
to-one correspondence between equivalence classes of Lévy processes on B and
convolution semigroups of states on B.

3.2. The generator and the Schürmann triple of a Lévy process. In this
subsection we will meet two more objects that classify Lévy processes, namely
their generator and their triple (called Schürmann triple by P.-A. Meyer, see
[Mey95, Section VII.1.6]).

We begin with a technical lemma.
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Lemma 3.7. (a): Let ψ : C → C be a linear functional on some coalgebra
C. Then the series

exp? ψ(b)
def
=
∑
n=0

ψ?n

n!
(b) = ε(b) + ψ(b) +

1

2
ψ ? ψ(b) + · · ·

converges for all b ∈ C.
(b): Let (ϕt)t≥0 be a convolution semigroup on some coalgebra C. Then the

limit

L(b) = lim
t↘0

1

t

(
ϕt(b)− ε(b)

)
exists for all b ∈ C. Furthermore we have ϕt = exp? tL for all t ≥ 0.

The proof of this lemma relies on the fundamental theorem of coalgebras, see
[ASW88, Sch93].

Proposition 3.8. (Schoenberg correspondence) Let B be an involutive bial-
gebra, (ϕt)t≥0 a convolution semigroup of linear functionals on B and

L = lim
t↘0

1

t

(
ϕt − ε

)
.

Then the following are equivalent.

(i): (ϕt)t≥0 is a convolution semigroup of states.
(ii): L : B → C satisfies L(1) = 0, and it is hermitian and conditionally

positive, i.e.
L(b∗) = L(b)

for all b ∈ B, and
L(b∗b) ≥ 0

for all b ∈ B with ε(b) = 0.

Proof. We prove only the (easy) direction (i)⇒(ii), the converse will follow from
the representation theorem, which can be found in [Sch93, Chapter 2].

The first property follows by differentiating ϕt(1) = 1 w.r.t. t.
Let b ∈ B, ε(b) = 0. If all ϕt are states, then we have ϕt(b

∗b) ≥ 0 for all t ≥ 0
and therefore

L(b∗b) = lim
t↘0

1

t

(
ϕt(b

∗b)− ε(b∗b)
)

= lim
t↘0

ϕt(b
∗b)

t
≥ 0.

Similarly, L is hermitian, since all ϕt are hermitian. � �

We will call a linear functional satisfying condition (ii) of the preceding Propo-
sition a generator. Lemma 3.7 and Proposition 3.8 show that Lévy processes can
also be characterized by their generator L = d

dt

∣∣
t=0

ϕt.
Let D be a pre-Hilbert space. Then we denote by L(D) the set of all linear

operators on D that have an adjoint defined everywhere on D, i.e.

L(D) =

{
X : D → D linear

∣∣∣∣ there exists X∗ : D → D linear s.t.
〈u,Xv〉 = 〈X∗u, v〉 for all u, v ∈ D

}
.
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L(D) is clearly a unital ∗-algebra.

Definition 3.9. Let B be a unital ∗-algebra equipped with a unital hermitian
character ε : B → C (i.e. ε(1) = 1, ε(b∗) = ε(b), and ε(ab) = ε(a)ε(b) for all
a, b ∈ B). A Schürmann triple on (B, ε) is a triple (ρ, η, L) consisting of

• a unital ∗-representation ρ : B → L(D) of B on some pre-Hilbert space
D,
• a ρ-ε-1-cocycle η : B → D, i.e. a linear map η : B → D such that

(3.2) η(ab) = ρ(a)η(b) + η(a)ε(b)

for all a, b ∈ B, and
• a hermitian linear functional L : B → C that has the bilinear map B×B 3

(a, b) 7→ −〈η(a∗), η(b)〉 as a ε-ε-2-coboundary, i.e. that satisfies

(3.3) −〈η(a∗), η(b)〉 = ∂L(a, b) = ε(a)L(b)− L(ab) + L(a)ε(b)

for all a, b ∈ B.

We will call a Schürmann triple surjective, if the cocycle η : B → D is surjective.

Theorem 3.10. Let B be an involutive bialgebra. We have one-to-one correspon-
dences between Lévy processes on B (modulo equivalence), convolution semigroups
of states on B, generators on B, and surjective Schürmann triples on B (modulo
unitary equivalence).

Proof. It only remains to establish the one-to-one correspondence between gen-
erators and Schürmann triples.

Let (ρ, η, L) be a Schürmann triple, then we can show that L is a generator,
i.e. a hermitian, conditionally positive linear functional with L(1) = 0.

The cocycle has to vanish on the unit element 1, since

η(1) = η(1 · 1) = ρ(1)η(1) + η(1)ε(1) = 2η(1).

This implies

L(1) = L(1 · 1) = ε(1)L(1) + 〈η(1), η(1)〉+ L(1)ε(1) = 2L(1) = 0.

Furthermore, L is hermitian by definition and conditionally positive, since by
(3.3) we get

L(b∗b) = 〈η(b), η(b)〉 = ||η(b)||2 ≥ 0

for b ∈ ker ε.
Let now L be a generator. The sesqui-linear form 〈·, ·〉L : B × B → C defined

by

〈a, b〉L = L
((
a− ε(a)1

)∗(
b− ε(b)1

))
for a, b ∈ B is positive, since L is conditionally positive. Dividing B by the
null-space

NL = {a ∈ B|〈a, a〉L = 0}
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we obtain a pre-Hilbert space D = B/NL with a positive definite inner prod-
uct 〈·, ·〉 induced by 〈·, ·〉L. For the cocycle η : B → D we take the canonical
projection, this is clearly surjective and satisfies Equation (3.3).

The ∗-representation ρ is induced from the left multiplication on B on ker ε,
i.e.

ρ(a)η
(
b− ε(b)1

)
= η
(
a
(
b− ε(b)1

))
or ρ(a)η(b) = η(ab)− η(a)ε(b)

for a, b ∈ B. To show that this is well-defined, we have to verify that left multi-
plication by elements of B leaves the null-space invariant. Let therefore a, b ∈ B,
b ∈ NL, then we have∣∣∣∣∣∣(a(b− ε(b)1))∣∣∣∣∣∣2 = L

((
ab− aε(b)1

)∗(
ab− aε(b)1

))
= L

((
b− ε(b)1

)∗
a∗
(
ab− aε(b)1

))
=

〈
b− ε(b)1, a∗a

(
b− ε(b)1

)〉
L

≤ ||b− ε(b)1||2
∣∣∣∣a∗a(b− ε(b)1∣∣∣∣2 = 0,

with Schwarz’ inequality.
That the Schürmann triple (ρ, η, L) obtained in this way is unique up to unitary

equivalence follows similarly as for the usual GNS construction. � �

Exercise 3.11. Let (Xt)t≥0 be a classical real-valued Lévy process with all mo-
ments finite (on some probability space (Ω,F , P )). Define a Lévy process on the
free unital algebra C[x] generated by one symmetric element x = x∗ with the
coproduct and counit determined by ∆(x) = x⊗ 1 + 1⊗ x and ε(x) = 0, whose
moments agree with those of (Xt)t≥0. More precisely, such that

Φ
(
jst(x

k)
)

= E
(
(Xt −Xs)

k
)

holds for all k ∈ N and all 0 ≤ s ≤ t.
Construct the Schürmann triple for Brownian motion and for a compound

Poisson process (with finite moments).

For the classification of Gaussian and drift generators on an involutive bialgebra
B with counit ε, we need the ideals

K = ker ε,

K2 = span {ab|a, b ∈ K},
K3 = span {abc|a, b, c ∈ K}.

Proposition 3.12. Let L be a conditionally positive, hermitian linear functional
on B. Then the following are equivalent.

(i): η = 0,
(ii): L|K2 = 0,
(iii): L is an ε-derivation, i.e. L(ab) = ε(a)L(b) +L(a)ε(b) for all a, b ∈ B,
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(iv): The states ϕt are homomorphisms, i.e. ϕt(ab) = ϕt(a)ϕt(b) for all
a, b ∈ B and t ≥ 0.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it and the associated Lévy process a drift.

Proposition 3.13. Let L be a conditionally positive, hermitian linear functional
on B.

Then the following are equivalent.

(i): L|K3 = 0,
(ii): L(b∗b) = 0 for all b ∈ K2,
(iii): L(abc) = L(ab)ε(c) +L(ac)ε(b) +L(bc)ε(a)− ε(ab)L(c)− ε(ac)L(b)−
ε(bc)L(a) for all a, b, c ∈ B,

(iv): ρ|K = 0 for the representation ρ in the surjective Schürmann triple
(ρ, η, L) associated to L by the GNS-type construction presented in the
proof of Theorem 3.10,

(v): ρ = ε1, for the representation ρ in the surjective Schürmann triple
(ρ, η, L) associated to L by the GNS-type construction presented in the
proof of Theorem 3.10,

(vi): η|K2 = 0 for the cocycle η in any Schürmann triple (ρ, η, L) containing
L,

(vii): η(ab) = ε(a)η(b) + η(a)ε(b) for all a, b ∈ B and the cocycle η in any
Schürmann triple (ρ, η, L) containing L.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it and also the associated Lévy process quadratic or
Gaussian.

The proofs of the preceding two propositions can be carried out as an exercise
or found in [Sch93, Section 5.1].

Proposition 3.14. Let L be a conditionally positive, hermitian linear functional
on B. Then the following are equivalent.

(i): There exists a state ϕ : B → C and a real number λ > 0 such that

L(b) = λ
(
ϕ(b)− ε(b)

)
for all b ∈ B.

(ii): There exists a Schürmann triple (ρ, η, L) containing L, in which the
cocycle η is trivial, i.e. of the form

η(b) =
(
ρ(b)− ε(b)

)
ω, for all b ∈ B,

for some non-zero vector ω ∈ D. In this case we will also call η the
coboundary of the vector ω.

If a conditionally positive, hermitian linear functional L satisfies one of these
conditions, then we call it a Poisson generator and the associated Lévy process
a compound Poisson process.
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Proof. To show that (ii) implies (i), set ϕ(b) = 〈ω,ρ(b)ω〉
〈ω,ω〉 and λ = ||ω||2.

For the converse, let (D, ρ, ω) be the GNS triple for (B, ϕ) and check that
(ρ, η, L) with η(b) =

(
ρ(b)− ε(b)

)
ω, b ∈ B defines a Schürmann triple. � �

Remark 3.15. The Schürmann triple for a Poisson generator L = λ(ϕ−ε) obtained
by the GNS construction for ϕ is not necessarily surjective. Consider, e.g., a
classical additive R-valued compound Poisson process, whose Lévy measure µ is
not supported on a finite set. Then the construction of a surjective Schürmann
triple in the proof of Theorem 3.10 gives the pre-Hilbert space D0 = span {xk|k =
1, 2, . . .} ⊆ L2(R, µ). On the other hand, the GNS-construction for ϕ leads to
the pre-Hilbert space D = span {xk|k = 0, 1, 2, . . .} ⊆ L2(R, µ). The cocycle η is
the coboundary of the constant function, which is not contained in D0.

3.3. Examples.

3.3.1. Lévy processes on the circle T and on the real line R. Consider the invo-
lutive bialgebra

B = span{eλ;λ ∈ R}
with the multiplication

eλ · eµ = eλ+µ, λ, µ ∈ R,
involution e∗λ = e−λ for λ ∈ R, coproduct

∆(eλ) = eλ ⊗ eλ
and counit ε(eλ) = 1 for all λ, µ ∈ R. Consider also the subalgebras

Bα = span{ekα; k ∈ Z}
for α > 0.

The basis elements eλ can be represented as exponential functions eλ : R 3
x → eiλx ∈ C, since this representation of B is faithful, we can view B as a
subalgebra of R(R).

The subalgebra Bα is generated as a *-algebra by one unitary element eα, it
is therefore commutative and isomphic to the algebra of polynomials on the unit
circle T.

3.3.2. Additive Lévy processes. For a vector space V the tensor algebra T (V ) is
the vector space

T (V ) =
⊕
n∈N

V ⊗n,

where V ⊗n denotes the n-fold tensor product of V with itself, V ⊗0 = C, with the
multiplication given by

(v1 ⊗ · · · ⊗ vn)(w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm,
for n,m ∈ N, v1, . . . , vn, w1, . . . , wm ∈ V . The elements of

⋃
n∈N V

⊗n are called
homogeneous, and the degree of a homogeneous element a 6= 0 is n if a ∈ V ⊗n.
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If {vi|i ∈ I} is a basis of V , then the tensor algebra T (V ) can be viewed as the
free algebra generated by vi, i ∈ I. The tensor algebra can be characterized by
the following universal property.

There exists an embedding ı : V → T (V ) of V into T (V ) such that for any
linear mapping R : V → A from V into an algebra there exists a unique algebra
homomorphism T (R) : T (V )→ A such that the following diagram commutes,

V
R //

ı
��

A

T (V )
T (R)

<<yyyyyyyy

i.e. T (R) ◦ ı = R.
Conversely, any algebra homomorphism Q : T (V )→ A is uniquely determined

by its restriction to V .
In a similar way, an involution on V gives rise to a unique extension as an

involution on T (V ). Thus for a ∗-vector space V we can form the tensor ∗-
algebra T (V ). The tensor ∗-algebra T (V ) becomes a ∗-bialgebra, if we extend
the linear ∗-maps

ε : V → C, ε(v) = 0,
∆ : V → T (V )⊗ T (V ), ∆(v) = v ⊗ 1 + 1⊗ v,

as ∗-homomorphisms to T (V ). We will denote the coproduct T (∆) and the
counit T (ε) again by ∆ and ε. The tensor ∗-algebra is even a Hopf ∗-algebra
with the antipode defined by S(v) = −v on the generators and extended as an
anti-homomorphism.

We will now study Lévy processes on T (V ). Let D be a pre-Hilbert space and
suppose we are given

(1) a linear ∗-map R : V → L(D),
(2) a linear map N : V → D, and
(3) a linear ∗-map ψ : V → C (i.e. a hermitian linear functional),

then

(3.4) Jt(v) = Λt

(
R(v)

)
+ A∗t (N(v)

)
+ At

(
N(v∗)

)
+ tψ(v)

for v ∈ V extends to a Lévy process (jt)t≥0, jt = T (Jt), on T (V ) (w.r.t. the
vacuum state).

In fact, and as we shall prove in the following two exercises, all Lévy processes
on T (V ) are of this form, cf. [Sch91b].

Exercise 3.16. Show that (R,N, ψ) can be extended to a Schürmann triple on
T (V ) as follows

(1) Set ρ = T (R).
(2) Define η : T (V )→ D by η(1) = 0, η(v) = N(v) for v ∈ V , and

η(v1 ⊗ · · · ⊗ vn) = R(v1) · · ·R(vn−1)N(vn)



INDEPENDENCE AND LÉVY PROCESSES IN QUANTUM PROBABILITY 17

for homogeneous elements v1 ⊗ · · · ⊗ vn ∈ V ⊗n, n ≥ 2.
(3) Finally, define L : T (V )→ C by L(1) = 0, L(v) = ψ(v) for v ∈ V , and

L(v1 ⊗ · · · ⊗ vn) =

{ 〈
N(v∗1), N(v2)

〉
if n = 2,〈

N(v∗1), R(v2) · · ·R(vn−1)N(vn)
〉

if n ≥ 3,

for homogeneous elements v1 ⊗ · · · ⊗ vn ∈ V ⊗n, n ≥ 2.

Prove furthermore that all Schürmann triples of T (V ) are of this form.

Exercise 3.17. Let (ρ, η, L) be a Schürmann triple on T (V ). Write down the
corresponding quantum stochastic differential equation for homogeneous elements
v ∈ V of degree 1 and show that its solution is given by (3.4).

3.3.3. Lévy processes on finite semigroups.

Exercise 3.18. Let (G, ·, e) be a finite semigroup with unit element e. Then the
complex-valued functions F(G) on G form an involutive bialgebra. The algebra
structure and the involution are given by pointwise multiplication and complex
conjugation. The coproduct and counit are defined by

∆(f)(g1, g2) = f(g1 · g2) for g1, g2 ∈ G,
ε(f) = f(e),

for f ∈ F(G).
Show that the classical Lévy processes in G are in one-to-one correspondence

to the Lévy processes on the ∗-bialgebra F(G).

4. Lévy Processes on Compact Quantum Groups and their Markov
Semigroups

See [CFK12]

4.1. Compact Quantum Groups. The notion of compact quantum groups
has been introduced in [Wor87a]. Here we adopt the definition from [Wor98]
(Definition 1.1 of that paper).

Definition 4.1. A C∗-bialgebra (a compact quantum semigroup) is a pair (A,∆),
where A is a unital C∗-algebra, ∆ : A → A ⊗ A is a unital, ∗-homomorphic map
which is coassociative, i.e.

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆.

If the quantum cancellation properties

Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A,

are satisfied, then the pair (A,∆) is called a compact quantum group (CQG).
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If the algebra A of a compact quantum group is commutative, then A is iso-
morphic to the algebra C(G) of continuous functions on a compact group G. To
emphasise that for an arbitrary (i.e. not necessarily non-commutative) compact
quantum group (A,∆) the algebra A replaces the algebra of continuous func-
tions on an (abstract) quantum analog of a group, the notation G = (A,∆) and
A = C(G) is also frequently used.

The map ∆ is called the coproduct of A and it induces the convolution product
of functionals

λ ? µ := (λ⊗ µ) ◦∆, λ, µ ∈ A′.

The following fact is of the fundamental importance, cf. [Wor98, Theorem 2.3].

Proposition 4.2. Let A be a compact quantum group. There exists a unique
state h ∈ A′ (called the Haar state of A) such that for all a ∈ A

(h⊗ idA) ◦∆(a) = (idA ⊗ h) ◦∆(a) = h(a)1.

In general, the Haar state of a compact quantum group need not be faithful or
tracial.

4.1.1. Corepresentations. An element u = (ujk)1≤j,k≤n ∈ Mn(A) is called an n-
dimensional corepresentation of G = (A,∆) if for all j, k = 1, . . . , n we have
∆(ujk) =

∑n
p=1 ujp⊗ upk. All corepresentations considered in this paper are sup-

posed to be finite-dimensional. A corepresentation u is said to be non-degenerate,
if u is invertible, unitary, if u is unitary, and irreducible, if the only matrices
T ∈ Mn(C) with Tu = uT are multiples of the identity matrix. Two corepre-
sentations u, v ∈Mn(A) are called equivalent, if there exists an invertible matrix
U ∈Mn(C) such that Uu = vU .

An important feature of compact quantum groups is the existence of the dense
∗-subalgebra A (the algebra of the polynomials of A), which is in fact a Hopf
∗-algebra – so for example ∆ : A → A�A. With the notation G = (A,∆), we
often refer to A as to Pol(G).

Fix a complete family (u(s))s∈I of mutually inequivalent irreducible unitary

corepresentations of A, then {u(s)
k` ; s ∈ I, 1 ≤ k, ` ≤ ns} (where ns denotes the

dimension of u(s)) is a linear basis of A, cf. [Wor98, Proposition 5.1]. We shall
reserve the index s = 0 for the trivial corepresentation u(0) = 1. The Hopf algebra
structure on A is defined by

ε(ujk) = δjk, S(ujk) = (ukj)
∗ for j, k = 1, . . . , ns,

where ε : A → C is the counit and S : A → A is the antipode. They satisfy

(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆,(4.1)

mA ◦ (id⊗ S) ◦∆ = ε(a)frm[o]−− = mA ◦ (S ⊗ id) ◦∆,(4.2) (
S(a∗)∗

)
= a(4.3)

for all a ∈ A. Let us also remind that the Haar state is always faithful on A.
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Set Vs = span {u(s)
jk ; 1 ≤ j, k ≤ ns} for s ∈ I. By [Wor98, Proposition 5.2],

there exists an irreducible unitary corepresentation u(sc), called the contragredient
representation of u(s), such that V ∗s = Vsc . Clearly (sc)c = s.

We shall frequently use Sweedler notation for the coproduct of an element a ∈
A, i.e. omit the summation and the index in the formula ∆(a) =

∑
i a(1),i⊗ a(2),i

and write simply ∆(a) = a(1) ⊗ a(2).

4.1.2. The dual discrete quantum group. To every compact quantum group G =
(A,∆) there exists a dual discrete quantum group Ĝ, cf. [PW90]. For our purposes

it will be most convenient to introduce Ĝ in the setting of van Daele’s algebraic
quantum groups, cf. [VD98, VD03]. However, the reader should be aware that
we adopt a slightly different convention for the Fourier transform.

A pair (A,∆), consisting of a ∗-algebra A (with or without identity) and a
coassociative comultiplication ∆ : A→M(A⊗A), is called an algebraic quantum
group if the product is non-degenerated (i.e. ab = 0 for all a implies b = 0), if the
two operators T1 : A�A 3 a⊗b 7→ ∆(a)(b⊗1) ∈ A⊗A and T1 : A�A 3 a⊗b 7→
∆(a)(1⊗ b) ∈ A⊗A are well-defined bijections and if there exists a nonzero left
integrals positive functional on A. Here, M(B) denotes the set of multipliers on
B. We refer the reader to [VD98] for details.

If (A,∆) is a compact quantum group then (A,∆|A) is an algebraic quantum
group (of compact type) and the Haar state is a faithful left and right integral.

For a ∈ A we can define ha ∈ A′ by the formula

ha(b) = h(ab) for b ∈ A,

where h is the Haar state, and we denote by Â the space of linear functionals on
A of the form ha for a ∈ A.

The set Â becomes an associative ∗-algebra with the convolution of functionals
as the multiplication: λ ? µ = (λ ⊗ µ) ◦∆, and the involution λ∗(x) = λ(S(x)∗)

(λ, µ ∈ Â). The Hopf structure is given as follows: the coproduct ∆̂ is the dual

of the product on A, the antipode Ŝ is the dual to S and the counit ε̂ is the
evaluation in frm[o]−−. In particular, we have Ŝ(λ)(x) = λ(Sx) for λ ∈ Â,

x ∈ A and if ∆̂(λ) ∈ Â ⊗ Â then

∆̂(λ)(x⊗ y) = λ(1)(x)⊗ λ(2)(y) = λ(xy), x, y ∈ A.

The pair Ĝ = (Â, ∆̂) is an algebraic quantum group, called the dual of G.

The linear map which associates to a ∈ A the functional ha ∈ Â is called the
Fourier transform and its value on an element a is also denoted by â. Let us note
that, due to the faithfulness of the Haar state h, Â separates the points of A.
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4.1.3. Woronowicz characters and modular automorphism group. For a ∈ A, λ ∈
A′ we define

λ ? a = (id⊗ λ)∆(a),

a ? λ = (λ⊗ id)∆(a).

If a ∈ A and λ ∈ A′, then λ ? a, a ? λ ∈ A.
For a compact quantum group A with the dense ∗-Hopf algebraA, there exists a

unique family (fz)z∈C of linear multiplicative functionals onA, called Woronowicz
characters (cf. [Wor98, Theorem 1.4]), such that

(1) fz(frm[o]−−) = 1 for z ∈ C,
(2) the mapping C 3 z 7→ fz(a) ∈ C is an entire holomorphic function for all

a ∈ A,
(3) f0(z) = ε and fz1 ? fz2 = fz1+z2 for any z1, z2 ∈ C,

(4) fz(S(a)) = f−z(a) and fz̄(a
∗) = f−z(a) for any z ∈ C, a ∈ A,

(5) S2(a) = f−1 ? a ? f1 for a ∈ A,
(6) the Haar state h satisfies:

h(ab) = h(b(f1 ? a ? f1)), a, b ∈ A.

In this case the formula

(4.4) σt(a) = fit ? a ? fit, t ≥ 0,

defines a one parameter group of modular automorphisms of A and h is the
(σ,−1)-KMS state, which means that it satisfies

(4.5) h(ab) = h(bσ−i(a)), a, b ∈ A,

cf. [BR97, Definition 5.3.1]. Such a state is σ-invariant, i.e. h(σt(a)) = h(a) for
a ∈ A and t ≥ 0 (see [BR97, Proposition 5.3.3]).

The matrix elements of the irreducible unitary corepresentations satisfy the
famous generalized Peter-Weyl orthogonality relations

(4.6) h
((
u

(s)
ij

)∗
u

(t)
k`

)
=
δstδj`f−1

(
u

(s)
ki

)
Ds

, h
(
u

(s)
ij

(
u

(t)
k`

)∗)
=
δstδikf1

(
u

(s)
`j

)
Ds

,

where f1 : A → C is the Woronowicz character and

Ds =
ns∑
`=1

f1

(
u

(s)
``

)
is the quantum dimension of u(s), cf. [Wor87a, Theorem 5.7.4]. Note that unitarity
implies that the matrix (

f1

(
(u

(s)
jk )∗

))
1≤j,k≤ns

∈Mns(C)

is invertible, with inverse
(
f1(u

(s)
jk )
)
jk
∈Mns(C), cf. [Wor87a, Equation (5.24)].
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Remark 4.3. The Haar state on compact quantum groups is a trace if and only
if the antipode is involutive, i.e. we have S2(a) = a for all a ∈ A. In this case we
say that (A,∆) is of Kac type. This is also equivalent to the following conditions,
cf. [Wor98, Theorem 1.5],

(1) fz = ε for all z ∈ C,
(2) σt = id for all t ∈ R.

The antipode S : A → A is a closable operator and its closure S admits a
polar decomposition

(4.7) S = R ◦ τ i
2
,

where τ i
2

is the analytic generator of a one parameter group (τt)t∈R of ∗-automor-

phisms of the C∗-algebra A and R : A → A is a linear antimultiplicative norm
preserving involution that commutes with hermitian conjugation and with the
semigroup (τt), i.e. τt ◦ R = R ◦ τt for all t ∈ R, see [Wor98, Theorem 1.6]. The
operator R is called the unitary antipode.

Moreover, τ and R are related to Woronowicz characters through the following
formulas

τt(a) = fit ? a ? f−it,(4.8)

R(a) = S(f 1
2
? a ? f− 1

2
)(4.9)

for a ∈ A.

4.2. Translation invariant Markov semigroups. Our goal is to construct
Markov semigroups on compact quantum groups that reflect the structure of the
quantum group. In this section we show that it is exactly the translation invariant
Markovian semigroups that can be obtained from Lévy processes on the algebra
of smooth functions A = Pol(G) of the quantum group G = (A,∆).

For this purpose we first prove that the Markov semigroup (Tt)t≥0 of a Lévy
process on A has a unique extension to a strongly continuous Markov semigroup
on both its reduced and its universal C∗-algebra. We then show that the charac-
terisation of Lévy processes in topological groups as the Markov processes which
are invariant under time and space translations extends to compact quantum
groups.

If (jst)0≤s≤t is a Lévy process on an ∗-algebra A with the convolution semigroup
of states (ϕt)t≥0 on A and the Markov semigroup (Tt)t≥0 on A, then, by a result
of Bédos, Murphy and Tuset [BMT01, Theorem 3.3], each ϕt a extends to a
continuous functional on Au, the universal C∗-algebra generated by A. Then
the formula Tt = (id ⊗ ϕt) ◦ ∆ makes sense on Au (where ∆ : Au → Au ⊗ Au
denotes the unique unital ∗-homomorphism that extends ∆ : A → A ⊗ A) and
one easily shows (in the same way as in Proposition below) that (Tt)t becomes a
strongly continuous Markov semigroup of contractions on Au. This means that
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each Tt (t ≥ 0) is a unital, completely positive contraction and (Tt) is a strongly
continuous semigroup on Au.

For us, however, it will be more natural to consider the reduced C∗-algebra
generated by A. This is the C∗-algebra Ar obtained by taking the norm closure
of the GNS representation ofA with respect to the Haar state h. The Haar state h
is by construction faithful on Ar. The coproduct on A extends to a unique unital
∗-homomorphism ∆ : Ar → Ar ⊗ Ar which makes the pair (Ar,∆) a compact
quantum group. The following result shows that, even though ϕt : A → C can
be unbounded with respect to the reduced C∗-norm and therefore not extend to
Ar, (Tt)t always extends to a strongly continuous Markov semigroup on Ar.

Michael Brannan states on any C∗-algebraic version C(G) of G define a con-
tinuous convolution operator on the reduced version Cr(G), cf. [Bra11, Lemma
3.4]. We will need a similar result for convolution semigroups o states on Pol(G).

Theorem 4.4. Each Lévy process (jst)0≤s≤t on the Hopf ∗-algebra A gives rise
to a unique strongly continuous Markov semigroup (Tt)t≥0 on Ar, the reduced
C∗-algebra generated by A.

Proof. Let H be the Hilbert space of the GNS representation of A associated to
the Haar state h and let ξ denotes the related (normalized) cyclic vector. Then for
any a ∈ A we have h(a) = 〈ξ, λ(a)ξ〉, where λ is the left regular representation.
We denote by ‖.‖r the norm in Ar, that is ‖a‖r = ‖λ(a)‖, where ‖.‖ denotes the
operator norm.

In a similar way, we associate the Hilbert space Ht, the GNS representation
ρt on Ht and the normalized cyclic vector ξt to each state ϕt (ϕt = Φ ◦ j0t, cf.
Definition ??). We have ϕt(a) = 〈ξt, ρt(a)ξt〉 for a ∈ A.

We define the operators

it : H 3 v → v ⊗ ξt ∈ H ⊗Ht

πt : H⊗Ht 3 v ⊗ w → 〈ξt, w〉Ht v ∈ H
Et : B(H⊗Ht) 3 X → πt ◦X ◦ it ∈ B(H).

Since for each t, it is an isometry and πt is contractive, Et is contractive too:
‖Et(X)‖ = ‖πt ◦X ◦ it‖ ≤ ‖X‖.

Next we define

U : λ(A)ξ ⊗ ρt(A)ξt 3 λ(a)ξ ⊗ ρt(b)ξt 7→ λ(a(1))ξ ⊗ ρt(a(2)b)ξt ∈ H ⊗Ht

and we check that it is an isometry with adjoint given by

U∗(λ(a)ξ ⊗ ρt(b)ξt) = λ(a(1))ξ ⊗ ρt(S(a(2))b)ξt.

Indeed, using the invariance of the Haar measure, we show that U is isometric

‖U(λ(a)ξ ⊗ ρt(b)ξt)‖2 = ‖λ(a(1))ξ ⊗ ρt(a(2)b)ξt‖2

= h(a∗(1)a(1))ϕt(b
∗a∗(2)a(2)b) = (h⊗ ϕbt)(a∗(1)a(1) ⊗ a∗(2)a(2)) = (h ? ϕbt)(a

∗a)

= h(a∗a)ϕbt(frm[o]−−) = h(a∗a)ϕt(b
∗b) = ‖λ(a)ξ ⊗ ρt(b)ξt‖2,
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where ϕbt(x) := ϕt(b
∗xb). Moreover, by the antipode property (4.2) we have

UU∗(λ(a)ξ ⊗ ρt(b)ξt) = U(λ(a(1))ξ ⊗ ρt(S(a(2))b)ξt)

= λ(a(1))ξ ⊗ ρt(a(2)S(a(3))b)ξt = λ(a(1)ε(a(2)))ξ ⊗ ρt(b)ξt = λ(a)ξ ⊗ ρt(b)ξt,
which implies that U is an isometry with dense image and therefore extends to a
unique unitary operator denoted again by U .

Now the fact that the Markov semigroup (Tt)t is bounded on Ar, i.e.

‖Tt(a)‖r = ‖λ(Tt(a))‖B(H) ≤ ‖λ(a)‖B(H) = ‖a‖r,
follows immediately from the relation

(4.10) λ(Tt(a)) = Et(U(λ(a)⊗ idHt)U
∗),

since

‖λ(Tt(a))‖ = ‖Et(U(λ(a)⊗ idHt)U
∗)‖ ≤ ‖U(λ(a)⊗ idHt)U

∗‖
= ‖λ(a)⊗ idHt‖ = ‖λ(a)‖.

To see that (4.10) holds, let us fix v ∈ H and b ∈ A such that v = λ(b)ξ. Then

Et(U(λ(a)⊗ idHt)U
∗)v = (πt ◦ U ◦ (λ(a)⊗ idHt) ◦ U∗ ◦ it)(λ(b)ξ)

= (πt ◦ U ◦ (λ(a)⊗ idHt) ◦ U∗) (λ(b)ξ ⊗ ξt)
= πt ◦ U ◦ (λ(a)⊗ idHt)

(
λ(b(1))ξ ⊗ ρt(S(b(2)))ξt

)
= πt ◦ U

(
λ(ab(1))ξ ⊗ ρt(S(b(2)))ξt

)
= πt

(
λ(a(1)b(1))ξ ⊗ ρt(a(2)b(2)S(b(3)))ξt

)
= πt

(
λ(a(1)b)ξ ⊗ ρt(a(2))ξt

)
= 〈ξt, ρt(a(2))ξt〉 λ(a(1)b)ξ

= λ(a(1)ϕt(a(2)))λ(b)ξ = λ(Tt(a))v.

This way we showed that each Tt extends to a contraction on Ar. The exten-
sions form again a semigroup and since both ∆ and ϕt are completely positive,
Tt is completely positive and contractive. Let us now check that (Tt)t forms a
strongly continuous semigroup on Ar.

For a given a ∈ Ar we chose by density b ∈ A such ‖a−b‖r < ε. Recall that for
b ∈ A, Tt(b) = ϕt ? b = (id⊗ϕt) ◦∆(b), where (ϕt)t is the convolution semigroup
of states on A (cf. Section ??). Then

‖Tt(a)− a‖r ≤ ‖Tt(a)− Tt(b)‖r + ‖Tt(b)− b‖r + ‖b− a‖r
≤ 2‖a− b‖r + ‖(ϕt ? b)− b‖r ≤ 2ε+

∑
‖b(1)ϕt(b(2))− b(1)ε(b(2))‖r

= 2ε+
∑
|ϕt(b(2))− ε(b(2))|‖b(1)‖r.

Since limt→0+ ϕt(b) = ε(b) for any b ∈ A and the sum is finite, we conclude that

lim
t→0+

‖Tt(a)− a‖r = 0 for each a ∈ Ar.
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�

The next results give the characterisation of Markov semigroup which are re-
lated to Lévy processes on compact quantum groups.

Lemma 4.5. Let (A,∆) be a compact quantum group and T : A → A be a
completely bounded linear map.

If T is translation invariant, i.e. satisfies

∆ ◦ T = (id⊗ T ) ◦∆

then T (Vs) ⊆ Vs for all s ∈ I and therefore T also leaves the ∗-Hopf algebra A
invariant.

Proof. Let s, s′ ∈ I, s 6= s′, and 1 ≤ j, k ≤ ns, 1 ≤ p, q ≤ ns′ . Since the Haar
state is idempotent, we have

h
((
u(s′)
pq

)∗
T
(
u

(s)
jk

))
= (h ? h)

((
u(s′)
pq

)∗
T
(
u

(s)
jk

))
=

ns′∑
r=1

(h⊗ h)
(((

u(s′)
pr

)∗
⊗
(
u(s′)
rq

)∗)
∆
(
T
(
u

(s)
jk

)))
=

ns′∑
r=1

ns∑
`=1

(h⊗ h)
((
u(s′)
pr

)∗
⊗
(
u(s′)
rq

)∗ (
u

(s)
j` ⊗ T

(
u

(s)
`k

)))

=
ns∑
`=1

δss′
f1((u

(s)
jp )∗)

Ds

h
(

(u
(s′)
`q )∗T (u

(s)
`k )
)
,

i.e. h
((
u

(s′)
pq

)∗
T
(
u

(s)
jk

))
= 0 for all s, s′ ∈ I, with s 6= s′, and all 1 ≤ j, k ≤ ns,

1 ≤ p, q ≤ ns′ . Therefore T
(
u

(s)
jk

)
∈ Vs. �

Theorem 4.6. Let (A,∆) be a compact quantum group and (Tt)t≥0 a quantum
Markov semigroup on (A,∆).

Then (Tt)t≥0 is the quantum Markov semigroup of a (uniquely determined) Lévy
process on A if and only if Tt is translation invariant for all t ≥ 0.

Proof. If (Tt)t≥0 comes from a Lévy process on A, then there exists a generating
functional φ on A such that the generator of the semigroup is Lφ(a) = φ ? a
(a ∈ A) and Tt = exp(−tLφ) on A. Then Lφ is translation invariant on A:

(id⊗Lφ)◦∆(a) = a(1)⊗(φ?a(2)) = a(1)⊗a(2)φ(a(3)) = ∆(a(1))φ(a(2)) = ∆◦Lφ(a).

Next we observe that the powers of a translation invariant operator are again
translation invariant: if (id⊗ L) ◦∆ = ∆ ◦ L, then , by induction, we have

(id⊗ L◦n) ◦∆ = (id⊗ L) ◦∆ ◦ L◦(n−1) = ∆ ◦ L◦n.

So Tt = exp(−tLφ) =
∑

n≥0
(−t)n
n!

L◦n is also translation invariant on A for each
t ≥ 0. By continuity Tt is translation invariant on A.
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Reciprocally, if Tt is translation invariant, then (by the previous Lemma) it
maps A to itself, and so ϕt := ε ◦ Tt is well-defined on A (ε is defined on A, but
may not extend to A). From the Markov semigroup properties of (Tt) we deduce
that (ϕt)t is a convolution semigroup of states on A. The generating functional
of this semigroup defines uniquely a Lévy process on A.

�

A similar result was proved by Lindsay and Skalski (cf. [LS11, Proposition
3.2]) in case of C∗-bialgebras with the counit, satisfying the residual vanishing
at infinity condition. This covers for example the case of coamenable compact
quantum groups, but their proof is considerably more technical than the simple
algebraic argument we presented here.

5. Independences and Convolutions in Noncommutative
Probability

Until now we only considered tensor independence, which is the natural gen-
eralization of the notion of stochastic independence used in classical probability
and also corresponds to the notion of independent observables used in quantum
mechanics. But in quantum probability there exist also other notions of inde-
pendence. In this section we shall study the most prominent examples, freeness,
monotone independence, and monotone independence, and the convolutions for
probability measures on R, R+, and T derived from them.

5.1. Nevanlinna theory and Cauchy transforms. Denote by C+ = {z ∈
C; Im z > 0} and C− = {z ∈ C; Im z < 0} the upper and lower half plane. For µ
a probability measure on R and z ∈ C+, we define its Cauchy transform Gµ by

Gµ(z) =

∫
R

1

z − x
dµ(x)

and its reciprocal Cauchy transform Fµ by

Fµ(z) =
1

Gµ(z)
.

Denote by F the following class of holomorphic self-maps,

F =

{
F : C+ → C+;F holomorphic and inf

z∈C+

ImF (z)

Im z
= 1

}
The map µ 7→ Fµ defines a bijection between the class M1(R) of probability
measures on R and F , as follows from the following theorem.

Theorem 5.1. [Maa92] Let F : C+ → C+ be holomorphic, then the following
are equivalent.

(i): infz∈C+
ImF (z)

Im z
= 1;

(ii): there exists a µ ∈M1(R) such that F = Fµ.

Furthermore, µ is uniquely determined by F .



26 UWE FRANZ

Similarly, for µ a probability measure on the unit circle T = {z ∈ C; |z| = 1}
or on the positive half-line R+ = {x ∈ R;x ≥ 0}, we define

ψµ(z) =

∫
xz

1− xz
dµ

and

Kµ(z) =
ψµ(z)

1 + ψµ(z)

for z ∈ C\suppµ.
The map µ 7→ Kµ defines bijections between the class M1(T) of probability

measures on T and the class

S = {K : D→ D;K holomorphic and K(0) = 0},
where D = {z ∈ C; |z| < 1}, and between the class M1(R+) of probability
measures on R+ and the class

P =

{
K : C\R+ → C\R+;

K holomorphic, limt↗0K(t) = 0, K(z) = K(z),
π ≥ argK(z) ≥ arg z for all z ∈ C+

}
,

cf. [BB05] and the references therein.
In the following, if X is an operator with distribution µ = L(X,Ω) w.r.t. Ω,

then we will write GX , FX , ΨX or KX instead of GL(X,Ω), FL(X,Ω), ψL(X,Ω), or
KL(X,Ω) for the transforms of the distribution of X.

5.2. Free convolutions. By Ak we call denote the set of alternating k-tuples of
1’s and 2’s, i.e.

Ak =
{

(ε1, . . . , εk) ∈ {1, 2}k; ε1 6= ε2 6= . . . 6= εk
}
.

Definition 5.2. [Voi86] Let A1,A2 ⊆ B(H) be two ∗-algebras of bounded oper-
ators on a Hilbert space and assume 1 ∈ Ai, i = 1, 2. Let Ω be a unit vector in
H and denote by Φ the vector state associated to Ω. We say that A1 and A2 are
free, if we have

Φ(X1 · · ·Xk) = 0

for all k ≥ 1, ε ∈ Ak, X1 ∈ Aε1 , . . . , Xk ∈ Aεk such that

Φ(X1) = · · · = Φ(Xk) = 0.

Two normal operators X and Y are called free, if the algebras alg(X) =
{h(X);h ∈ Cb(C)} and alg(Y ) = {h(Y );h ∈ Cb(C)} they generate are free.

Theorem 5.3. [Maa92, CG05, CG06] Let µ and ν be two probability measures
on the real line, with reciprocal Cauchy transforms Fµ and Fν. Then there exist
unique functions Z1, Z2 ∈ F such that

Fµ
(
Z1(z)

)
= Fν

(
Z2(z)

)
= Z1(z) + Z2(z)− z

for all z ∈ C+.
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The function F = Fµ ◦ Z1 = Fν ◦ Z2 also belongs to F and is therefore the
the reciprocal Cauchy transform of some probability measure λ. One defines the
additive free convolution of µ and ν as this unique probability measure and writes
µ� ν = λ. This is justified by the following theorem.

Theorem 5.4. [Maa92, BV93] Let X and Y be two self-adjoint operators on
some Hilbert space H that are free w.r.t. some unit vector Ω ∈ H. If Ω is cyclic,
i.e. if

alg{h(X), h(Y );h ∈ Cb(R)}Ω = H.

then X + Y is essentially self-adjoint and the distribution w.r.t. Ω of its closure
is equal to the additive free convolution of the distributions of X and Y w.r.t. to
Ω, i.e.

L(X + Y,Ω) = L(X,Ω) � L(Y,Ω).

There exist analogous results for the multiplicative convolutions of probability
measures on the unit circle and the positive half-line, cf. [Maa92, BV93, CG05,
CG06]

Theorem 5.5.
(i) Let µ and ν be two probability measures on the unit circle with transforms Kµ

and Kν and whose first moments do not vanish,
∫
T xdµ(x) 6= 0,

∫
T xdν(x) 6= 0.

Then there exist unique functions Z1, Z2 ∈ S such that

Kµ

(
Z1(z)

)
= Kν

(
Z2(z)

)
=
Z1(z)Z2(z)

z

for all z ∈ D\{0}. The multiplicative free convolution λ = µ� ν is defined as the
unique probability measure λ with transform Kλ = Kµ ◦ Z1 = Kν ◦ Z2.

(ii) Let U and V be two unitary operators on some Hilbert space H that are free
w.r.t. some unit vector Ω ∈ H. Then the products UV and V U are also uni-
tary and their distributions w.r.t. to Ω are equal to the free convolution of the
distributions of U and V w.r.t. Ω, i.e. i.e.

L(UV,Ω) = L(V U,Ω) = L(U,Ω) � L(V,Ω).

Theorem 5.6.
(i) Let µ and ν be two probability measures on the positive half-line such that
µ 6= δ0, ν 6= δ0 and denote their transforms by Kµ and Kν. Then there exist
unique functions Z1, Z2 ∈ P such that

Kµ

(
Z1(z)

)
= Kν

(
Z2(z)

)
=
Z1(z)Z2(z)

z

for all z ∈ C\R+. The multiplicative free convolution λ = µ� ν is defined as the
unique probability measure λ with transform Kλ = Kµ ◦ Z1 = Kν ◦ Z2.

(ii) Let X and Y be two positive operators on some Hilbert space H that are free
w.r.t. some unit vector Ω ∈ H. Assume furthermore that Ω is cyclic, i.e. that

alg{h(X), h(Y );h ∈ Cb(R)}Ω = H.
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Then the products
√
XY
√
X and

√
Y X
√
Y are essentially self-adjoint and pos-

itive, and their distributions w.r.t. to Ω are equal to the free convolution of the
distributions of X and Y w.r.t. Ω, i.e. i.e.

L(
√
XY
√
X,Ω) = L(

√
Y X
√
Y ,Ω) = L(X,Ω) � L(Y,Ω).

5.3. Monotone Convolutions.

Definition 5.7. [Mur00] Let A1,A2 ⊂ B(H) be two ∗-algebras of bounded op-
erators on a Hilbert space H, and let Ω ∈ H be a unit vector. We say that A1

and A2 are monotonically independent w.r.t. Ω, if we have

〈Ω, X1X2 · · ·XkΩ〉 =

〈
Ω,

∏
κ:εκ=1

XκΩ

〉 ∏
κ:εκ=2

〈Ω, XκΩ〉

for all k ∈ N, ε ∈ Ak, X1 ∈ Aε1 , . . . , Xk ∈ Aεk .
Remark 5.8.

(a) Note that this notion depends on the order, i.e. if A1 and A2 are monotoni-
cally independent, then this does not imply that A2 and A1 are monotonically
independent. In fact, if A1 and A2 are monotonically independent and A2 and A1

are also monotonically independent, and Φ(·) = 〈Ω, ·Ω〉 does not vanish on one
of the algebras, then restrictions of Φ to A1 and A2 have to be homomorphisms.
To prove this for the restriction to, e.g., A1, take an element Y ∈ A2 such that
Φ(Y ) 6= 0, then

Φ(X1X2) =
Φ(X1Y X2)

Φ(Y )
= Φ(X1)Φ(X2)

for all X1, X2 ∈ A1.
(b) The algebras are not required to be unital. If A1 is unital, then the restriction
of Φ(·) = 〈Ω, ·Ω〉 toA2 has to be a homomorphism, since monotone independence
implies

〈Ω, XY Ω〉 = 〈Ω, X1Y Ω〉 = 〈Ω, XΩ〉〈Ω, Y Ω〉
for X, Y ∈ A2.

(c) In the definition of monotone independence the condition

XY Z = 〈Ω, Y Ω〉XZ
for all X,Z ∈ A1, Y ∈ A2 is often also imposed. If the state vector Ω is cyclic
for the algebra generated by A1 and A2, then this is automatically satisfied. Let
X1, X3, . . . , Z1, Z3, . . . ∈ A1 and Y,X2, X4, . . . , Z2, Z4, . . . ∈ A2, then

〈X1 · · ·XnΩ, Y Z1 · · ·ZmΩ〉 = 〈Ω, X∗n · · ·X∗1Y Z1 · · ·ZmΩ〉
= 〈Ω, Y Ω〉

∏
k even

〈Ω, X∗kΩ〉
∏

` even
〈Ω, Z`Ω〉〈X1X3 · · ·Ω, Z1Z3 · · ·Ω

= 〈Ω, Y Ω〉〈X1 · · ·XnΩ, Z1 · · ·ZmΩ〉,
for all n,m ≥ 1, i.e., X∗1Y Z1 and 〈Ω, Y Ω〉X∗1Z1 coincide on the subspace gener-
ated by A1 and A2 from Ω.
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Definition 5.9. Let X and Y be two normal operators on a Hilbert space H,
not necessarily bounded. We say that X and Y are monotonically independent
w.r.t. Ω, if the ∗-algebras alg0(X) = {h(X);h ∈ Cb(C), h(0) = 0} and alg0(Y ) =
{h(Y );h ∈ Cb(C), h(0) = 0} are monotonically independent w.r.t. Ω.

Let us now introduce the model we shall use for calculations with monotonically
independent operators.

Proposition 5.10. Let µ, ν be two probability measures on C and define normal
operators X and Y on L2(C× C, µ⊗ ν) by

DomX =

{
ψ ∈ L2(C× C, µ⊗ ν);

∫
C

∣∣∣∣x ∫
C
ψ(x, y)dν(y)

∣∣∣∣2 dµ(x) <∞

}
,

DomY =

{
ψ ∈ L2(C× C, µ⊗ ν);

∫
C×C
|yψ(x, y)|2dµ⊗ ν(x, y) <∞

}
,

(Xψ)(x, y) = x

∫
C
ψ(x, y′)dν(y′),

(Xψ)(x, y) = yψ(x, y).

Then L(X,1) = µ, L(Y,1) = ν, and X and Y are monotonically independent
w.r.t. the constant function 1.

Proof. Denote by P2 the orthogonal projection onto the space of functions in
L2(C × C, µ ⊗ ν) which do not depend on the second variable, and by Mx mul-
tiplication by the first variable, then X = MxP2. This operator is normal, we
have

h(X)ψ(x, y) =
(
h(x)− h(0)

) ∫
C
ψ(x, y)dν(y) + h(0)ψ(x, y)

and 〈1, h(X)1〉 =
∫
C h(x)dµ(x) for all h ∈ Cb(C), i.e. L(X,1) = µ. The operator

Y is multiplication by the second variable, it is clearly normal. We have

h(Y )ψ(x, y) = h(y)ψ(x, y)

and 〈1, h(Y )1〉 =
∫
C h(y)dν(y) for all h ∈ Cb(C), i.e. L(Y,1) = ν.

Let f1, . . . , fn, g1, . . . , gn ∈ Cb(C), f1(0) = · · · = fn(0) = 0. Then

fn(X)gn−1(Y ) · · · g1(Y )f1(X)1 =
n−1∏
k=1

∫
C
gk(y)dν(y) f1 · · · fn

and

〈1, fn(X)gn−1(Y ) · · · g1(Y )f1(X)1〉 =
∏
k=1

∫
C
gk(y)dν(y)

∫
C
f1(x) · · · fn(x)dµ(x)

=
n−1∏
k=1

〈1, gk(Y )1〉〈1f1(X) · · · fn(X)1〉,
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i.e. the condition for monotone independence is satisfied in this case. Similarly one
checks the expectation of gn(Y )fn(X) · · · g1(Y )f1(X), fn(X)gn(Y ) · · · f1(X)g1(Y ),
and gn(Y )fn−1(X) · · · f1(X)g1(Y ). �

The following theorem shows that any pair of monotonically independent nor-
mal operators can be reduced to this model.

Theorem 5.11. Let X and Y be two normal operators on a Hilbert space H
that are monotonically independent with respect to Ω ∈ H and let µ = L(X,Ω),
ν = L(Y,Ω).

Then there exists an isometry W : L2(C× C, µ⊗ ν)→ H such that

W ∗h(X)Wψ(x, y) =
(
h(x)− h(0)

) ∫
ψ(x, y)dν(y) + h(0)ψ(x, y),(5.1)

W ∗h(Y )Wψ(x, y) = h(y)ψ(x, y)

for x, y ∈ C, ψ ∈ L2(C× C, µ⊗ ν) ∼= L2(σX , µ)⊗ L2(σY , ν) and h ∈ Cb(C).

We have WL2(C× C, µ⊗ ν) = alg{h(X), h(Y );h ∈ Cb(C)}Ω.
If the vector Ω ∈ H is cyclic for the algebra alg(X, Y ) = alg{h(X), h(Y );h ∈

Cb(C)} generated by X and Y , then W is unitary.

Proof. Define W on simple tensors of bounded continuous functions by

Wf ⊗ g = g(Y )f(X)Ω

for f, g ∈ Cb(C). It follows from the monotone independence of X and Y that
this defines an isomorphism, since

〈Wf1 ⊗ g1,Wf2 ⊗ g2〉 = 〈Ω, f1(X)∗g1(Y )∗g2(Y )f2(X)Ω〉
= 〈Ω, f1(X)∗f2(X)Ω〉〈Ω, g1(Y )∗g2(Y )Ω〉

=

∫
f1(t)f2(t)dµ(t)

∫
g1(t)g2(t)dν(t).

Since Cb(C)⊗Cb(C) is dense in L2(C×C, µ⊗ ν), W extends to a unique isomor-
phism on L2(C× C, µ⊗ ν).

The relations

〈Wf1 ⊗ g1, h(X)Wf2 ⊗ g2〉 = 〈Ω, f1(X)∗g1(Y )∗h(X)g2(Y )f2(X)Ω〉
= 〈Ω, f1(X)∗

(
h(X)− h(0)

)
f2(X)Ω〉〈Ω, g1(Y )∗Ω〉〈Ω, g2(Y )Ω〉

+ h(0)〈Ω, f1(X)∗g1(Y )∗g2(Y )f2(X)Ω〉
= 〈Ω, g2(Y )Ω〉

〈
Wf1 ⊗ g1,W

(
(h− h(0)1

)
f1 ⊗ 1

〉
+ h(0)〈Wf1 ⊗ g1,Wf1 ⊗ g2〉

=

〈
Wf1 ⊗ g1,W

(∫
g2(y)dν(y)(h− h(0)1)f1 ⊗ 1 + h(0)f2 ⊗ g2

)〉
and

〈Wf1 ⊗ g1, h(Y )Wf2 ⊗ g2〉 = 〈Ω, f1(X)∗g1(Y )∗h(Y )g2(Y )f2(X)Ω〉
= 〈Wf1 ⊗ g1,Wf2 ⊗ (hg2)〉
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shows that we have the desired formulas for simple tensors of functions f1, f2, g1, g2 ∈
Cb(C). The general case follows by linearity and continuity. Remark 5.8(c) im-
plies

WL2(C× C, µ⊗ ν) = span {g(Y )f(X)Ω; f, g ∈ Cb(C)}
= alg{h(X), h(Y );h ∈ Cb(C)}Ω.

If Ω is cyclic, then W is surjective and therefore unitary. �

Remark 5.12. It follows that the joint law of two monotonically independent,
normal operators is uniquely determined by their marginal distributions, in the
sense that the restriction of Φ(·) = 〈Ω, ·Ω〉 to alg(X, Y ) = alg{h(X), h(Y );h ∈
Cb(C)} is uniquely determined by L(X,Ω) and L(Y,Ω). But by Lemma ??, also
computations for unbounded functions of X and Y , e.g., concerning the operators
X + Y for self-adjoint X and Y , or

√
XY
√
Y for positive X and Y , reduce to

the model introduced in Proposition 5.10.

5.3.1. Additive monotone convolution on M1(R).

Definition 5.13. [Mur00] Let µ and ν be two probability measures on R with
reciprocal Cauchy transforms Fµ and Fν . Then we define the additive monotone
convolution λ = µ . ν of µ and ν as the unique probability measure on R with
reciprocal Cauchy transform Fλ = Fµ ◦ Fν .

It follows from Subsection 5.1 that the additive monotone convolution is well-
defined. Let us first recall some basic properties of the additive monotone con-
volution.

Proposition 5.14. [Mur00] The additive monotone convolution is associative
and ∗-weakly continuous in both arguments. It is affine in the first argument and
convolution from the right by a Dirac measure corresponds to translation, i.e.
µ . δx = T−1

x µ for x ∈ R, where Tx : R→ R is defined by Tx(t) = t+ x.

This convolution is not commutative, i.e. in general we have µ . ν 6= ν . µ.
Let x ∈ R and 0 ≤ p ≤ 1. Then one can compute, e.g.,

δx .
(
pδ1 + (1− p)δ−1

)
= qδz1 + (1− q)δz2

where

z1 =
1

2

(
x+

√
x2 + 4(2p− 1)x+ 4

)
,

z2 =
1

2

(
x−

√
x2 + 4(2p− 1)x+ 4

)
,

q =
x+ 4p− 2 +

√
x2 + 4(2p− 1)x+ 4

2
√
x2 + 4(2p− 1)x+ 4

.

This example shows that convolution from the left by a Dirac mass is in general
not equal to a translation and that the additive monotone convolution is not
affine in the second argument.
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Note that the continuity and the fact that the monotone convolution is affine
in the first argument imply the following formula

(5.2) µ . ν =

∫
R
δx . ν dµ(x)

for all µ, ν ∈M1(R).
The following proposition is the key to treating the additive monotone convo-

lution for general probability measures on R.

Proposition 5.15. Let µ and ν be two probability measures on R and denote by
Mx and My the self-adjoint operators on L2(R×R, µ⊗ν) defined by multiplication
with the coordinate functions. Denote by P2 the orthogonal projection onto the
subspace of functions which do not depend on the second coordinate, L2(R×R, µ⊗
ν) 3 ψ 7→

∫
R ψ(·, y)dν(y) ∈ L2(R × R, µ ⊗ ν). Then MxP2 = P2Mx and My are

self-adjoint and monotonically independent w.r.t. the constant function and the
operator z −MxP2 −My has a bounded inverse for all z ∈ C\R, given by

(5.3)
(
(z −MxP2 −My)

−1ψ
)

(x, y) =
ψ(x, y)

z − y
+

x
∫
R
ψ(x,y′)
z−y′ dν(y′)

(z − y)(1− xGν(z))
.

Proof. MxP2 and My are monotonically independent by 5.10.
The first term on the right-hand-side of Equation (5.3) is obtained from ψ by

multiplication with a bounded function, the second by composition of multipli-
cations with bounded functions and the projection P2. Equation (5.3) therefore
clearly defines a bounded operator. To check that it is indeed the inverse of
z −MxP2 −My is straightforward,

(z −MxP2 −My)

(
ψ(x, y)

z − y
+

x
∫
R
ψ(x,y′)
z−y′ dν(y′)

(z − y)
(
1− xGν(z)

))

= ψ(x, y)+
x
∫ ψ(x,y′)

z−y′ dν(y′)

1− xGν(z)
−x
∫
R

ψ(x, y′)

z − y′
dν(y′)−x

∫
R

x
∫
R
ψ(x,y′′)
z−y′′ dν(y′′)

(z − y′)
(
1− xGν(z)

)dν(y′)

= ψ(x, y) +

(
(z − y)− (z − y)

(
1− xGν(z)

)
− xGν(z)(z − y)

)
x
∫
R
ψ(x,y′)
z−y′ dν(y′)

(z − y)
(
1− xGν(z)

)
= ψ(x, y)

�

Theorem 5.16. Let X and Y be two self-adjoint operators on a Hilbert space
H that are monotonically independent w.r.t. to a unit vector Ω ∈ H. Assume
furthermore that Ω is cyclic, i.e. that

alg{h(X), h(Y );h ∈ Cb(R)}Ω = H.
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Then X + Y is essentially self-adjoint and the distribution w.r.t. Ω of its closure
is equal to the additive monotone convolution of the distributions of X and Y
w.r.t. to Ω, i.e.

L(X + Y,Ω) = L(X,Ω) . L(Y,Ω).

Proof. Let µ = L(X,Ω), ν = L(Y,Ω).
By Theorem 5.11 and Lemma ?? it is sufficient to consider the case where X

and Y are given by Proposition 5.10. Proposition 5.15 shows that z−X−Y admits
a bounded inverse and therefore that Ran (z −X − Y ) is dense for z ∈ C\R. By
[RS80, Theorem VIII.3] this is equivalent to X +Y being essentially self-adjoint.

Using Equation (5.3), we can compute the Cauchy transform of the distribution
of the closure of X + Y . Let z ∈ C+, then we have

GX+Y (z) = 〈Ω, (z −X − Y )−1Ω〉− =
〈
1, (z −MxP2 −My)

−11
〉

=

〈
1,

1

z − y
+

xGν(z)

(z − y)(1− xGν(z))

〉
=

∫
R×R

1

(z − y)(1− xGν(z))
dµ⊗ ν

=

∫
R

Gν(z)

1− xGν(z)
dµ(x) = Gµ

(
1

Gν(z)

)
= Gµ

(
Fν(z)

)
,

or

FX+Y (z) =
1

GX+Y (z)
=

1

Gµ

(
Fν(z)

) = Fµ
(
Fν(z)

)
= Fµ.ν(z).

�

5.3.2. Multiplicative monotone convolution on M1(R+).

Definition 5.17. [Ber05a] Let µ and ν be two probability measures on the posi-
tive half-line R+ with transforms Kµ and Kν . Then the multiplicative monotone
convolution of µ and ν is defined as the unique probability measure λ = µ m ν
on R+ with transform Kλ = Kµ ◦Kν .

It follows from Subsection 5.1 that the multiplicative monotone convolution on
M1(R+) is well-defined.

Let us first recall some basic properties of the multiplicative monotone convo-
lution.

Proposition 5.18. The multiplicative monotone convolutionM1(R+) is associa-
tive and ∗-weakly continuous in both arguments. It is affine in the first argument
and convolution from the right by a Dirac measure corresponds to dilation, i.e.
µm δα = D−1

α µ for α ∈ R+, where Dα : R+ → R+ is defined by Dα(t) = αt.

This convolution is not commutative, i.e. in general we have µm ν 6= νmµ. As
in the additive case is not affine in the second argument, either, and convolution
from the left by a Dirac mass is in general not equal to a dilation.

We want to extend [Fra06, Corollary 4.3] to unbounded positive operators, i.e.
we want to show that if X and Y are two positive operators such that X − 1
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and Y are monotonically independent, then the distribution of
√
XY
√
X is equal

to the multiplicative monotone convolution of the distributions of X and Y . By
Theorem 5.11, it is sufficient to do the calculations for the case where X and Y are
constructed from multiplication with the coordinate functions and the projection
P2.

Proposition 5.19. Let µ and ν be two probability measures on R+, ν 6= δ0, and
let My be the self-adjoint operator on L2(R+×R+, µ⊗ν) defined by multiplication
with the coordinate function (x, y) 7→ y. Define Sx on L2(R+ × R+, µ⊗ ν) by

(5.4)

DomSx =

{
ψ ∈ L2(R+ × R+, µ⊗ ν);

∫
R+

xψ(x, y)dν(y) ∈ L2(R+, µ)

}
,

(Sxψ)(x, y) = (x− 1)

∫
R+

ψ(x, y)dν(y) + ψ(x, y)

Then Sx−1 and My are monotonically independent w.r.t. to the constant function
and the operator z −

√
SxMy

√
Sx has a bounded inverse for all z ∈ C\R, given

by

(5.5)
(

(z −
√
SxMy

√
Sx)

−1ψ
)

(x, y) =
ψ(x, y) + g(x)

z − y
+ h(x).

where

g(x) =

√
x− x

(1− x)zGν(z) + x

∫
R+

ψ(x, y)dν(y)

+
z(x− 1)

(1− x)zGν(z) + x

∫
R+

ψ(x, y)

z − y
dν(y),

h(x) =
(
√
x− 1)2Gν(z)

(1− x)zGν(z) + x

∫
R+

ψ(x, y)dν(y)

+

√
x− x

(1− x)zGν(z) + x

∫
R+

ψ(x, y)

z − y
dν(y).

Proof. Fix z ∈ C+. Let x > 0, then

Im
z

z − x
= − xIm z

(Re z − x)2 + (Im z)2
< 0,

and therefore

Im zGν(z) = Im

∫
R+

z

z − x
dν(x) < 0.

Similarly, we get Im zGν(z) > 0 for z ∈ C−. It follows that the functions in front
of the integrals in the definitions of g and h are bounded as functions of x, and
therefore g and h are square-integrable. Since 1

z−y is bounded, too, we see that

Equation (5.5) defines a bounded operator.
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Let us now check that it is the inverse of z −
√
SxMy

√
Sx.

Using the notation of the previous subsection, we can write Sx also as Sx =
Mx−1P2 + 1 = MxP2 + P⊥2 , where P⊥2 is the projection onto the orthogonal
complement of the subspace of functions which do not depend on y. Its square
root can be written as

√
Sx = M√xP2 + P⊥2 = M√x−1P2 + 1, it acts as(√

Sxψ
)

(x, y) =
(√

x− 1
) ∫

R+

ψ(x, y)dν(y) + ψ(x, y)

on a function ψ ∈ Dom
√
Sx ⊆ L2(R+ × R+, µ⊗ ν).

Since h does not depend on y, we have
√
Sxh =

√
xh. For g we get(√

Sx
g

z − y

)
(x) = (

√
x− 1)

∫
R+

g(x)

z − y
dν(y) +

g(x)

z − y

=

(
(
√
x− 1)Gν(z) +

1

z − y

)
g(x).

Set ϕ = ψ+g
z−y + h. Applying

√
Sx to ϕ, we get(√

Sxϕ
)

(x, y) =
ψ(x, y)

z − y
+

√
x− x

(z − y)
(
(1− x)zGν(z) + x

) ∫
R+

ψ(x, y)dν(y)

+
z(x− 1)

(z − y)
(
(1− x)zGν(z) + x

) ∫
R+

ψ(x, y)

z − y
dν(y)

=
ψ(x, y) + g(x)

z − y
.

From this we get ((
z −

√
SxMy

√
Sx

)
ϕ
)

(x, y) = ψ(x, y)

after some tedious, but straightforward computation. �

Remark 5.20. It ν = δ0, then My = 0 on L2(R+ × R+, µ ⊗ ν), and therefore√
SxMy

√
Sx = 0. This is of course a positive operator, and its distribution is δ0.

Theorem 5.21. Let X and Y be two positive self-adjoint operators on a Hilbert
space H such that X − 1 and Y are monotonically independent w.r.t. to a unit
vector Ω ∈ H. Assume furthermore that Ω is cyclic, i.e.

alg{h(X), h(Y );h ∈ Cb(R+)}Ω = H.

Then
√
XY
√
X is essentially self-adjoint and the distribution w.r.t. Ω of its clo-

sure is equal to the multiplicative monotone convolution of the distributions of X
and Y w.r.t. Ω, i.e.

L
(√

XY
√
X,Ω

)
= L(X,Ω) m L(Y,Ω).
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Proof. Let µ = L(X,Ω), ν = L(Y,Ω).
By Theorem 5.11 it is sufficient to consider the case X = Sx and Y = My. In

this case Proposition 5.19 shows that z −
√
XY
√
X has a bounded inverse for

all z ∈ C\R. This implies that Ran(z −
√
XY
√
X) is dense for all z ∈ C\R and

that
√
XY
√
X is essentially self-adjoint, cf. [RS80, Theorem VIII.3].

Using Equation (5.5), we can compute the Cauchy transform of the distribution

of the closure of
√
XY
√
X. Let z ∈ C+, then we have

G√XY
√
X(z) =

〈
Ω,
(
z −
√
XY
√
X
)−1

Ω

〉
=

〈
1,
(
z −

√
SxMy

√
Sx

)−1

1

〉
=

〈
1,

1 + g1

z − y
+ h1

〉
where

g1(x) =

√
x− x+ (x− 1)zGν(x)

(1− x)zGν(z) + x
=

√
x

(1− x)zGν(z) + x
− 1,

h1(x) =
(1−

√
x)Gν(z)

(1− x)zGν(z) + x
.

Therefore

G√XY
√
X(z) =

∫
R+×R+

(
1 + g1(x)

z − y
+ h1(x)

)
dµ⊗ ν(x, y)

=

∫
R+

Gν(z)

(1− x)zGν(z) + x
dµ(x) =

Gν(z)

zGν(z)− 1
Gµ

(
zGν(z)

zGν(z)− 1

)
.(5.6)

Using the relation

Gµ(z) =
1

z

(
ψµ

(
1

z

)
+ 1

)
to replace the Cauchy transforms by the ψ-transforms, this becomes

ψ√XY
√
X

(
1

z

)
= ψµ

(
ψν(1/z)

ψν(1/z) + 1

)
,

or finally

K√XY
√
X(z) = Kµ

(
Kν(z)

)
= Kµmν(z).

�

5.3.3. Multiplicative monotone convolution on M1(T).

Definition 5.22. [Ber05a] Let µ and ν be two probability measure on the unit
circle T with transforms Kµ and Kν . Then the multiplicative monotone convo-
lution of µ and ν is defined as the unique probability measure λ = µ m ν on T
with transform Kλ = Kµ ◦Kν .
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It follows from Subsection 5.1 that the multiplicative monotone convolution on
M1(T) is well-defined.

Let us first recall some basic properties of the multiplicative monotone convo-
lution.

Proposition 5.23. The multiplicative monotone convolution on M1(T) is as-
sociative and ∗-weakly continuous in both arguments. It is affine in the first
argument and convolution from the right by a Dirac measure corresponds to ro-
tation, i.e. µ m δeiϑ = R−1

ϑ µ for ϑ ∈ [0, 2π[, where Rϑ : T → T is defined by
Rϑ(t) = eiϑt.

This convolution is not commutative, i.e. in general we have µm ν 6= νmµ. As
in the additive case is not affine in the second argument, either, and convolution
from the left by a Dirac mass is in general not equal to a rotation.

Probability measures on the unit circle arise as distributions of unitary oper-
ators and they are completely characterized by their moments. Therefore the
following theorem is a straightforward consequence of [Ber05a] (see also [Fra06,
Theorem 4.1 and Corollary 4.2]).

Theorem 5.24. Let U and V be two unitary operators on a Hilbert space H,
Ω ∈ H a unit vector and assume furthermore that U−1 and V are monotonically
independent w.r.t. Ω. Then the products UV and V U are also unitary and their
distribution w.r.t. Ω is equal to the multiplicative monotone convolution of the
distributions of U and V , i.e.

(5.7) L(UV,Ω) = L(V U,Ω) = L(U,Ω) m L(V,Ω).

Remark 5.25. Note that the order of the convolution product on the right-hand-
side of Equation (5.7) depends only on the order in which the operators U − 1
and V − 1 are monotonically independent, but not on the order in which U and
V are multiplied.

5.4. Boolean Convolutions.

Definition 5.26. Let A1,A2 ⊂ B(H) be two ∗-algebras of bounded operators
on a Hilbert space H, and let Ω ∈ H be a unit vector. We say that A1 and A2

are boolean independent w.r.t. Ω, if we have

〈Ω, X1X2 · · ·XkΩ〉 =
k∏

κ=1

〈Ω, XκΩ〉

for all k ∈ N, ε ∈ Ak, X1 ∈ Aε1 , . . . , Xk ∈ Aεk .
Remark 5.27. The algebras are not required to be unital. If one of them is unital,
say A1, then the restriction of Φ(·) = 〈Ω, ·Ω〉 to the other algebra, say A2, has
to be a homomorphism, since the boolean independence implies

〈Ω, XY Ω〉 = 〈Ω, X1Y Ω〉 = 〈Ω, XΩ〉〈Ω, Y Ω〉
for X, Y ∈ A2.
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Definition 5.28. Let X and Y be two normal operators on a Hilbert space H,
not necessarily bounded. We say that X and Y are boolean independent, if the
∗-algebras alg0(X) = {h(X) : h ∈ Cb(C), h(0) = 0} and alg0(Y ) = {h(Y ) : h ∈
Cb(C), h(0) = 0} are boolean independent.

We will start by characterizing up to unitary transformations the general form
of two boolean independent normal operators. Given a measure space (M,M, µ),
we shall denote by L2(M,µ)0 the orthogonal complement of the constant function,
i.e.

L2(M,µ)0 =

{
ψ ∈ L2(M,µ);

∫
M

ψdµ = 0

}
.

Proposition 5.29. Let µ, ν be two probability measures on C and define normal
operators Nx and Ny on C⊕ L2(C, µ)0 ⊕ L2(C, ν)0 by

DomNx =


 α

ψ1

ψ2

 ∈ C⊕ L2(C, µ)0 ⊕ L2(C, ν)0;

∫
C

∣∣x(ψ1(x) + α
)∣∣2 dµ(x) <∞

 ,

DomNy =


 α

ψ1

ψ2

 ∈ C⊕ L2(C, µ)0 ⊕ L2(C, ν)0;

∫
C

∣∣y(ψ2(y) + α
)∣∣2 dν(y) <∞

 ,

Nx

 α
ψ1

ψ2

 =

 ∫
C x
(
ψ1(x) + α

)
dµ(x)

x(ψ1 + α)−
∫
C x
(
ψ1(x) + α

)
dµ(x)

0

 ,

Ny

 α
ψ1

ψ2

 =

 ∫
C y
(
ψ2(y) + α

)
dν(y)

0
x(ψ2 + α)−

∫
C y
(
ψ2(y) + α

)
dν(y)

 .

Then Nx and Ny are boolean independent w.r.t. the vector ω =

 1
0
0

 and we

have L(Nx, ω) = µ, L(Ny, ω) = ν.

Proof. Under the identification C⊕L2(C, µ)0⊕L2(C, ν)0
∼= L2(C, µ)⊕L2(C, ν)0,

where  α
ψ1

ψ2

 ∼= ( ψ1 + α
ψ2

)
,

the operator Nx becomes multiplication by the variable x on L2(C, µ). It is clearly
normal and we have

h(Nx)

 α
ψ1

ψ2

 =

 ∫
C h(x)

(
α + ψ1(x)

)
dµ(x)

h(α + ψ1)−
∫
C h(x)

(
α + ψ1(x)

)
dµ(x)

h(0)ψ2
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and 〈ω, h(Nx)ω〉 =
∫
C hdµ for all h ∈ Cb(C), i.e. L(Nx, ω) = µ. Similarly

h(Ny)

 α
ψ1

ψ2

 =

 ∫
C h(y)

(
α + ψ2(y)

)
dν(y)

h(0)ψ1

h(α + ψ2)−
∫
C h(y)

(
α + ψ2(y)

)
dν(y)


for all h ∈ Cb(C), and L(Ny, ω) = ν.

Let f1, . . . , fn, g1, . . . , gn ∈ Cb(C), with f1(0) = · · · = fn(0) = g1(0) = · · · =
gn(0) = 0. Then

fn(Nx)gn−1(Ny) · · · g1(Ny)f1(Nx)ω =

 ∏n
k=1

∫
C fkdµ

∏n−1
`=1

∫
C g`dν∏n−1

k=1

∫
C fkdµ

∏n−1
`=1

∫
C g`dν

(
fn −

∫
C fndµ

)
0


and therefore

〈ω, fn(Nx)gn−1(Ny) · · · g1(Ny)f1(Nx)ω〉 =
n∏
k=1

∫
C
fk dµ

n−1∏
`=1

∫
C
g` dν

=
n∏
k=1

〈ω, fk(Nx)ω〉
n−1∏
`=1

〈ω, g`(Ny)ω〉

i.e. the condition for boolean independence is satisfied in this case. Similarly one
checks the expectation of gn(Ny)fn(Nx) · · · g1(Ny)f1(Nx), fn(Nx)gn(Ny) · · · f1(Nx)g1(Ny),
and gn(Ny)fn−1(Nx) · · · f1(Nx)g1(Ny). �

We shall now show that any pair of boolean independent normal operators can
be reduced to this model.

Theorem 5.30. Let X and Y be two normal operators on a Hilbert space H that
are boolean independent w.r.t. to Ω ∈ H and let µ = L(X,Ω), ν = L(Y,Ω).

Then there exists an isometry W : C⊕ L2(C, µ)0 ⊕ L2(C, ν)0 → H such that

(5.8)

W ∗h(X)W

 α
ψ1

ψ2

 =

 ∫
C h(x)

(
α + ψ1(x)

)
dµ(x)

h(α + ψ1)−
∫
C h(x)

(
α + ψ1(x)

)
dµ(x)

h(0)ψ2

 ,

W ∗h(Y )W

 α
ψ1

ψ2

 =

 ∫
C h(y)

(
α + ψ2(y)

)
dν(y)

h(0)ψ1

h(α + ψ2)−
∫
C h(y)

(
α + ψ2(y)

)
dν(y)


for all h ∈ Cb(C), α ∈ C, ψ1 ∈ L2(C, µ)0, ψ2 ∈ L2(C, ν)0.

We have W
(
C⊕ L2(C, µ)0 ⊕ L2(C, ν)0

)
= alg{h(X), h(Y ) : h ∈ Cb(C)}Ω.

If the vector Ω ∈ H is cyclic for the algebra alg(X, Y ) = alg{h(X), h(Y ) : h ∈
Cb(C)} generated by X and Y , then W is unitary.
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Proof. For a probability measure µ on C, let

Cb(C)µ,0 =

{
f ∈ Cb(C);

∫
C
f(z)dµ(x) = 0

}
,

then Cb(C)µ,0 is dense in L2(C, µ)0.
Define W : C⊕ Cb(C)µ,0 ⊕ Cb(C)ν,0 → H by

W

 α
f
g

 =
(
α + f(X) + g(Y )

)
Ω.

This is an isometry, since

〈
W

 α1

f1

g1

 ,W

 α2

f2

g2

〉 =
〈(
α1 + f1(X) + g1(Y )

)
Ω,
(
α2 + f2(X) + g2(Y )

)
Ω
〉

= α1α2 +

∫
C
f1(x)f2(x)dµ(x) +

∫
C
g1(y)g2(y)dµ(y),

where the mixed terms all vanish because 〈Ω, fi(X)Ω〉 = 〈Ω, gi(Y )Ω〉 = 0 for
i = 1, 2. Therefore W extends in a unique way to an isometry on C⊕L2(C, µ)0⊕
L2(C, ν)0

Let now h ∈ Cb(C), then we get

〈
W

 α1

f1

g1

 , h(X)W

 α2

f2

g2

〉
=
〈(
α1 + f1(X) + g1(Y )

)
Ω, (h(X)− h(0)1

)(
α2 + f2(X) + g2(Y )

)
Ω
〉

+ h(0)

〈
W

 α1

f1

g1

 ,W

 α2

f2

g2

〉

=
〈(
α1 + f1(X)

)
Ω,
(
h(X)− h(0)1

)(
α2 + f2(X)

)
Ω
〉
+h(0)

〈 α1

f1

g1

 ,

 α2

f2

g2

〉 ,
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because the boolean independence and 〈Ω, gi(Y )Ω〉 = 0 imply that all other terms
vanish. But since 〈Ω, fi(Y )Ω〉 = 0, this is equal to〈(

α1 + f1(X)
)
Ω, h(X)

(
α2 + f2(X)

)
Ω
〉

+ h(0)

〈 α1

f1

g1

 ,

 α2

f2

g2

〉− α1α2 − 〈f1, f2〉


=

〈 α1

f1

g1

 ,

 ∫
h(x)

(
f2(x) + α2

)
dµ(x)

h(f2 + α2)−
∫
h(x)

(
f2(x) + α2

)
dµ(x)

h(0)g2

〉 .
This proves the first formula. The second formula follows by symmetry.

Let f, g ∈ Cb(C), f(0) = 0, and note that∣∣∣∣∣∣∣∣f(X)g(Y )Ω−
∫
C
gdν f(X)Ω

∣∣∣∣∣∣∣∣2
= 〈Ω, g(Y )∗|f(X)|2g(Y )Ω−

∫
C
gdν 〈Ω, g(Y )∗|f(X)|2Ω

−
∫
C
gdν 〈Ω, |f(X)|2g(Y )Ω〉+

(∫
C
gdν

)2

〈Ω, |f(X)|2Ω〉

= 0,

i.e. f(X)g(Y )Ω =
∫
C gdν f(X)Ω. Similarly f(Y )g(X)Ω =

∫
C gdµ f(Y )Ω and

thus

alg{h(X), h(Y ) : h ∈ Cb(C)}Ω = span {Ω, f(X)Ω, f(Y )Ω; f ∈ Cb(C)}
= W

(
C⊕ L2(C, µ)0 ⊕ L2(C, ν)0

)
.

If Ω is cyclic, then W is surjective and therefore unitary. �

Remark 5.31. As in the monotone case, cf. Remark 5.12, this theorem shows that
joint law of bounded functions on X and Y is uniquely determined by L(X,Ω)
and L(Y,Ω). Furthermore, the characterisation and computation of the law of

unbounded functions of X and Y like, e.g., X + Y or
√
XY
√
Y , is also reduced

to the model introduced in Proposition 5.29.

5.4.1. Additive boolean convolution on M1(R).

Definition 5.32. [SW97] Let µ and ν be two probability measures on R with
reciprocal Cauchy transforms Fµ and Fν . Then we define the additive monotone
convolution λ = µ] ν of µ and ν as the unique probability measure λ on R with
reciprocal Cauchy transform given by

Fλ(z) = Fµ(z) + Fν(z)− z

for z ∈ C+.
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That the additive boolean convolution is well-defined follows from Subsection
5.1. It is commutative and associative, ∗-weakly continuous, but not affine, cf.
[SW97].

Proposition 5.33. Let µ and ν be two probabilities on R and define operators
Nx and Ny as in Proposition 5.29. Then Nx and Ny are self-adjoint and boolean

independent w.r.t. ω =

 1
0
0

. Furthermore, the operator z − Nx − Ny has a

bounded inverse for all z ∈ C\R, given by

(5.9) (z −Nx −Ny)
−1

 α
ψ1

ψ2

 =

 β
ψ1+βx−cx

z−x
ψ2+βy−cy

z−y

 ,

where

(5.10) β =
αGµ(z)Gν(z) +Gν(z)

∫
R
ψ1(x)
z−x dµ(x) +Gµ(z)

∫
R
ψ2(y)
z−y dν(y)

Gµ(z) +Gν(z)− zGµ(z)Gν(z)
,

and cx, cy ∈ C have to be chosen such that

(5.11)

∫
R

ψ1(x) + βx− cx
z − x

dµ(x) = 0 =

∫
R

ψ2(y) + βy − cy
z − y

dν(y).

Note that Equation (5.11) yields the following formulas for the constants cx, cy,

cx =

∫ ψ1(x)
z−x dµ(x) + β

(
zGµ(z)− 1

)
Gµ(z)

,

cy =

∫ ψ2(y)
z−y dν(y) + β

(
zGν(z)− 1

)
Gν(z)

.

Proof. Nx and Ny are boolean independent by Proposition 5.29.
For z ∈ C+, we have ImFµ(z) ≥ Im z > 0, ImFν(z) ≥ Im z > 0, and therefore

Im
Gµ(z) +Gν(z)− zGµ(z)Gν(z)

Gµ(z)Gν(z)
= Im

(
Fµ(z) + Fν(z)− z

)
> 0.

This shows that the denominator of the right-hand-side of Equation (5.10) can

not vanish for z ∈ C+. Since Gµ(z) = Gµ(z), Gν(z) = Gν(z), it can not vanish
for z with Im z < 0, either. The functions 1

z−x and x
z−x are bounded on R for

z ∈ C\R, therefore Equation (5.9) defines a bounded operator.
Let

ϕ1 =
ψ1 + βx− cx

z − x
and ϕ2 =

ψ2 + βy − cy
z − y

,
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then

(z −Nx −Ny)

 β
ϕ1

ϕ2

 =

 zβ + dx + dy
(z − x)ϕ1 − βx− dx
(z − y)ϕ2 − βy − dy

 =

 zβ + dx + dy
ψ1 − cx − dx
ψ2 − cy − dy


where

dx =

∫
x
(
ϕ1(x) + β

)
dµ(x), dy =

∫
y
(
ϕ2(y) + β

)
dν(y).

Since ψ1 ∈ L2(R, µ)0, ψ2 ∈ L2(R, ν)0, integrating over the second and third
component gives cx = −dx and cy = −dy. Therefore

(z −Nx −Ny)

 β
ϕ1

ϕ2

 =

 zβ − cx − cy
ψ1

ψ2


We have to show that the first component is equal to α. We get

zβ−cx−cy = zβ−
∫ ψ1(x)

z−x dµ(x) + β
(
zGµ(z)− 1

)
Gµ(z)

−
∫ ψ1(x)

z−x dµ(x) + β
(
zGν(z)− 1

)
Gν(z)

= β
Gµ(z) +Gν(z)− zGµ(z)Gν(z)

Gµ(z)Gν(z)
− 1

Gµ(z)

∫
ψ1(x)

z − x
dµ(x)− 1

Gν(z)

∫
ψ2(y)

z − y
dν(y)

Substituting Equation (5.10) into this expression, we get the desired result zβ −
cx − cy = α. �

Theorem 5.34. Let X and Y be two self-adjoint operators on a Hilbert space
H that are boolean independent w.r.t. a unit vector Ω ∈ H and assume that Ω is
cyclic, i.e. that

alg{h(X), h(Y );h ∈ Cb(R)}Ω = H.

Then X +Y is essentially self-adjoint and the distribution w.r.t. Ω of the closure
of X+Y is equal to the boolean convolution of the distributions of X and Y w.r.t.
Ω, i.e.

L(X + Y,Ω) = L(X,Ω) ] L(Y,Ω).

Proof. Let µ = L(X,Ω), ν = L(Y,Ω).
By Theorem 5.30 and Lemma ?? it is sufficient to consider the case where

X and Y are defined as in Proposition 5.29. Then Proposition 5.33 shows that
z−X −Y admits a bounded inverse for all z ∈ C\R and therefore that Ran (z−
X − Y ) is dense. By [RS80, Theorem VIII.3] this is equivalent to X + Y being
essentially self-adjoint.
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Using Equation (5.9), we can compute the Cauchy transform of the distribution
of the closure of X + Y . Let z ∈ C+, then

GX+Y (z) = 〈Ω, (z −X − Y )−1Ω〉 =
〈
ω, (z −Nx −Ny)

−1ω
〉

=

〈 1
0
0

 ,
Gµ(z)Gν(z)

Gµ(z) +Gν(z)− zGµ(z)Gν(z)


1

x− zGµ(z)−1

Gµ(z)

z−x
y− zGν (z)−1

Gν (z)

z−y


〉

=
Gµ(z)Gν(z)

Gµ(z) +Gν(z)− zGµ(z)Gν(z)
.

Replacing all Cauchy transforms by their reciprocals, this becomes

FX+Y (z) = Fµ(z) + Fν(z)− z = Fµ]ν(z).

�

5.4.2. Multiplicative boolean convolution onM1(R+). Bercovici defined a boolean
convolution for probability measures in the positive half-line, cf. [Ber06].

Definition 5.35. [Ber06] Let µ and ν be two probability measures on R+ with
transforms Kµ and Kν . If the holomorphic function defined by

(5.12) K(z) =
Kµ(z)Kν(z)

z

for z ∈ C\R+ belongs to the class P introduced in Subsection 5.1, then the
boolean convolution λ = µ ×∪ ν is defined as the unique probability measure λ on
R+ with transform Kλ = K.

But in general the function K defined in Equation (5.12) does not belong to P
and in that case the convolution of µ and ν is not defined. Bercovici has shown
that for any probability measure µ on R+ not concentrated in one point there

exists an n ∈ N such that the n-fold convolution product µ
×∪ n

of µ with itself is
not defined, cf. [Ber06, Proposition 3.1].

This is of course related to the problem that in general the product of two
positive operators is not positive. One might hope that taking e.g.

√
XY
√
X

could lead to a better definition of the multiplicative boolean convolution, since
this operator will automatically be positive. This leads to a convolution that is
always defined, but that is not associative, cf. []

5.4.3. Multiplicative boolean convolution on M1(T). For completeness we recall
the results of [Fra04] for the multiplicative boolean convolution on M1(T).

Definition 5.36. [Fra04] Let µ and ν be two probability measures on the unit
circle T with transforms Kµ and Kν . Then the multiplicative monotone convolu-

tion λ = µ ×∪ ν is defined as the unique probability on T with transform Kλ given
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by

Kλ(z) =
Kµ(z)Kν(z)

z
for z ∈ D.

It is easy to deduce from Subsection 5.1 that the multiplicative boolean con-
volution onM1(T) is well-defined. It is associative, commutative, ∗-weakly con-
tinuous in both arguments, but not affine.

Theorem 5.37. [Fra04, Theorem 2.2] Let U and V be two unitary operators
on a Hilbert space H, Ω ∈ H a unit vector and assume furthermore that U − 1
and V − 1 are boolean independent w.r.t. Ω. Then the products UV and V U are
also unitary and their distribution w.r.t. Ω is equal to the multiplicative boolean
convolution of the distributions of U and V , i.e.

L(UV,Ω) = L(V U,Ω) = L(U,Ω) ×∪ L(V,Ω).

6. The Five Universal Independences

In classical probability theory there exists only one canonical notion of indepen-
dence. But in quantum probability many different notions of independence have
been used, e.g., to obtain central limit theorems or to develop a quantum stochas-
tic calculus. If one requires that the joint law of two independent random variables
should be determined by their marginals, then an independence gives rise to a
product. Imposing certain natural condition, e.g., that functions of independent
random variables should again be independent or an associativity property, it
becomes possible to classify all possible notions of independence. This program
has been carried out in recent years by Schürmann [Sch95a], Speicher [Spe97],
Ben Ghorbal and Schürmann [BGS99][BGS02], and Muraki [Mur03, Mur02]. In
this section we will present the results of these classifications. Furthermore we
will formulate a category theoretical approach to the notion of independence and
show that boolean, monotone, and anti-monotone independence can be reduced
to tensor independence in a similar way as the bosonization of Fermi indepen-
dence [HP86] or the symmetrization of [Sch93, Section 3].

The free product of unital associative algebras will play an important role in
our discussion.

Example 6.1. The coproduct in the category of unital algebras Alg is the free
product of ∗-algebras with identification of the units. Let us recall its defining
universal property. Let {Ak}k∈I be a family of unital ∗-algebras and

∐
k∈I Ak

their free product, with canonical inclusions {ik : Ak →
∐

k∈I Ak}k∈I . If B is
any unital ∗-algebra, equipped with unital ∗-algebra homomorphisms {i′k : Ak →
B}k∈I , then there exists a unique unital ∗-algebra homomorphism h :

∐
k∈I Ak →

B such that

h ◦ ik = i′k, for all k ∈ I.
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It follows from the universal property that for any pair of unital ∗-algebra ho-
momorphisms j1 : A1 → B1, j2 : A2 → B2 there exists a unique unital ∗-algebra
homomorphism j1

∐
j2 : A1

∐
A2 → B1

∐
B2 such that the diagram

A1
iA1

zzuuuuuuuuu

j1 // B1
iB1

##HHHHHHHHH

A1

∐
A2 j1

∐
j2 // B1

∐
B2

A2

iA2

ddIIIIIIIII

j2
// B2

iB2

;;vvvvvvvvv

commutes.
The free product

∐
k∈I Ak can be constructed as a sum of tensor products of the

Ak, where neighboring elements in the product belong to different algebras. For
simplicity, we illustrate this only for the case of the free product of two algebras.
Let

A =
⋃
n∈N

{ε ∈ {1, 2}n|ε1 6= ε2 6= · · · 6= εn}

and decompose Ai = C1 ⊕ A0
i , i = 1, 2, into a direct sum of vector spaces. As

a coproduct A1

∐
A2 is unique up to isomorphism, so the construction does not

depend on the choice of the decompositions.
Then A1

∐
A2 can be constructed as

A1

∐
A2 =

⊕
ε∈A

Aε,

where A∅ = C, Aε = A0
ε1
⊗ · · · ⊗ A0

εn for ε = (ε1, . . . , εn). The multiplication in
A1

∐
A2 is inductively defined by

(a1 ⊗ · · · ⊗ an) · (b1 ⊗ · · · ⊗ bm) =

{
a1 ⊗ · · · ⊗ (an · b1)⊗ · · · ⊗ bm if εn = δ1,
a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm if εn 6= δ1,

for a1⊗· · ·⊗an ∈ Aε, b1⊗· · ·⊗bm ∈ Aδ. Note that in the case εn = δ1 the product
an · b1 is not necessarily in A0

εn , but is in general a sum of a multiple of the unit
of Aεn and an element of A0

εn . We have to identify a1 ⊗ · · · an−1 ⊗ 1⊗ b2 ⊗ · · · bm
with a1 ⊗ · · · ⊗ an−1 · b2 ⊗ · · · bm.

Since
∐

is the coproduct of a category, it is commutative and associative in
the sense that there exist natural isomorphisms

γA1,A2 : A1

∐
A2

∼=→ A2

∐
A1,(6.1)

αA1,A2,A3 : A1

∐(
A2

∐
A3

) ∼=→
(
A1

∐
A2

)∐
A3

for all unital ∗-algebras A1,A2,A3. Let i` : A` → A1

∐
A2 and i′` : A` →

A2

∐
A1, ` = 1, 2 be the canonical inclusions. The commutativity constraint
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γA1,A2 : A1

∐
A2 → A2

∐
A1 maps an element ofA1

∐
A2 of the form i1(a1)i2(b1) · · · i2(bn)

with a1, . . . , an ∈ A1, b1, . . . , bn ∈ A2 to

γA1,A2

(
i1(a1)i2(b1) · · · i2(bn)

)
= i′1(a1)i′2(b1) · · · i′2(bn) ∈ A2

∐
A1.

Exercise 6.2. We also consider non-unital algebras. Show that the free prod-
uct of ∗-algebras without identification of units is a coproduct in the category
nuAlg of non-unital (or rather not necessarily unital) algebras. Give an explicit
construction for the free product of two non-unital algebras.

Exercise 6.3. Show that the following defines a a functor from the category of
non-unital algebras nuAlg to the category of unital algebras Alg. For an algebra
A ∈ Ob nuAlg, Ã is equal to Ã = C1⊕A as a vector space and the multiplication
is defined by

(λ1 + a)(λ′1 + a′) = λλ′1 + λ′a+ λa′ + aa′

for λ, λ′ ∈ C, a, a′ ∈ A. We will call Ã the unitization of A. Note that A ∼=
01 +A ⊆ Ã is not only a subalgebra, but even an ideal in Ã.

How is the functor defined on the morphisms?
Show that the following relation holds between the free product with identifi-

cation of units
∐

Alg and the free product without identification of units
∐

nuAlg,

˜A1

∐
nuAlg

A2
∼= Ã1

∐
Alg

Ã2

for all A1,A2 ∈ Ob nuAlg.
Note furthermore that the range of this functor consists of all algebras that

admit a decomposition of the form A = C1 ⊕ A0, where A0 is a subalgebra.
This is equivalent to having a one-dimensional representation. The functor is
not surjective, e.g., the algebra M2 of 2 × 2-matrices can not be obtained as a
unitization of some other algebra.

6.1. Classical stochastic independence and the product of probability
spaces. Two random variables X1 : (Ω,F , P ) → (E1, E1) and X2 : (Ω,F , P ) →
(E2, E2), defined on the same probability space (Ω,F , P ) and with values in two
possibly distinct measurable spaces (E1, E1) and (E2, E2), are called stochasti-
cally independent (or simply independent) w.r.t. P , if the σ-algebras X−1

1 (E1) and
X−1

2 (E2) are independent w.r.t. P , i.e. if

P
(
(X−1

1 (M1) ∩X−1
2 (M2)

)
= P

(
(X−1

1 (M1)
)
P
(
X−1

2 (M2)
)

holds for all M1 ∈ E1, M2 ∈ E2. If there is no danger of confusion, then the
reference to the measure P is often omitted.

This definition can easily be extended to arbitrary families of random vari-
ables. A family

(
Xj : (Ω,F , P ) → (Ej, Ej))j∈J , indexed by some set J , is called
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independent, if

P

(
n⋂
k=1

X−1
jk

(Mjk)

)
=

n∏
k=1

P
(
X−1
jk

(Mjk)
)

holds for all n ∈ N and all choices of indices k1, . . . , kn ∈ J with jk 6= j` for j 6= `,
and all choices of measurable sets Mjk ∈ Ejk .

There are many equivalent formulations for independence, consider, e.g., the
following proposition.

Proposition 6.4. Let X1 and X2 be two real-valued random variables. The
following are equivalent.

(i) X1 and X2 are independent.
(ii) For all bounded measurable functions f1, f2 on R we have

E
(
f1(X1)f2(X2)

)
= E

(
f1(X1)

)
E
(
f2(X2)

)
.

(iii) The probability space (R2,B(R2), P(X1,X2)) is the product of the probability
spaces (R,B(R), PX1) and (R,B(R), PX2), i.e.

P(X1,X2) = PX1 ⊗ PX2 .

We see that stochastic independence can be reinterpreted as a rule to compute
the joint distribution of two random variables from their marginal distribution.
More precisely, their joint distribution can be computed as a product of their
marginal distributions. This product is associative and can also be iterated to
compute the joint distribution of more than two independent random variables.

The classifications of independence for non-commutative probability spaces
[Spe97, BGS99, BG01, Mur03, Mur02] that we are interested in are based on
redefining independence as a product satisfying certain natural axioms.

6.1.1. Example: Tensor Independence in the Category of Algebraic Probability
Spaces. By the category of algebraic probability spaces AlgProb we denote the
category of associative unital algebras over C equipped with a unital linear func-
tional. A morphism j : (A1, ϕ1)→ (A2, ϕ2) is a quantum random variable, i.e. an
algebra homomorphism j : A1 → A2 that preserves the unit and the functional,
i.e. j(1A1) = 1A2 and ϕ2 ◦ j = ϕ1.

The tensor product we will consider on this category is just the usual tensor
product (A1 ⊗A2, ϕ1 ⊗ ϕ2), i.e. the algebra structure of A1 ⊗A2 is defined by

1A1⊗A2 = 1A1 ⊗ 1A2 ,

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2,

and the new functional is defined by

(ϕ1 ⊗ ϕ2)(a1 ⊗ a2) = ϕ1(a1)ϕ2(a2),

for all a1, b1 ∈ A1, a2, b2 ∈ A2.
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This becomes a tensor category with inclusions with the inclusions defined by

iA1(a1) = a1 ⊗ 1A2 ,

iA2(a2) = 1A1 ⊗ a2,

for a1 ∈ A1, a2 ∈ A2.
One gets the category of ∗-algebraic probability spaces, if one assumes that

the underlying algebras have an involution and the functional are states, i.e. also
positive. Then an involution is defined on A1 ⊗A2 by (a1 ⊗ a2)∗ = a∗1 ⊗ a∗2 and
ϕ1 ⊗ ϕ2 is again a state.

The notion of independence associated to this tensor product with inclusions by
Definition ?? is the usual notion of Bose or tensor independence used in quantum
probability, e.g., by Hudson and Parthasarathy.

Proposition 6.5. Two quantum random variables j1 : (B1, ψ1) → (A, ϕ) and
j2 : (B2, ψ2) → (A, ϕ), defined on algebraic probability spaces (B1, ψ1), (B2, ψ2)
and with values in the same algebraic probability space (A, ϕ) are independent if
and only if the following two conditions are satisfied.

(i): The images of j1 and j2 commute, i.e.[
j1(a1), j2(a2)

]
= 0,

for all a1 ∈ A1, a2 ∈ A2.
(ii): ϕ satisfies the factorization property

ϕ
(
j1(a1)j2(a2)

)
= ϕ

(
j1(a1)

)
ϕ
(
j2(a2)

)
,

for all a1 ∈ A1, a2 ∈ A2.

We will not prove this Proposition since it can be obtained as a special case
of Proposition 6.6, if we equip the algebras with the trivial Z2-grading A(0) = A,
A(1) = {0}.

6.1.2. Example: Fermi Independence. Let us now consider the category of Z2-
graded algebraic probability spaces Z2-AlgProb. The objects are pairs (A, ϕ)
consisting of a Z2-graded unital algebra A = A(0) ⊕ A(1) and an even unital
functional ϕ, i.e. ϕ|A(1) = 0. The morphisms are random variables that don’t
change the degree, i.e., for j : (A1, ϕ1)→ (A2, ϕ2), we have

j(A(0)
1 ) ⊆ A(0)

2 and j(A(1)
1 ) ⊆ A(1)

2 .

The tensor product (A1 ⊗Z2 A2, ϕ1 ⊗ ϕ2) = (A1, ϕ1) ⊗Z2 (A2, ϕ2) is defined as
follows. The algebra A1 ⊗Z2 A2 is the graded tensor product of A1 and A2, i.e.

(A1⊗Z2A2)(0) = A(0)
1 ⊗A

(0)
2 ⊕A

(1)
1 ⊗A

(1)
2 , (A1⊗Z2A2)(1) = A(1)

1 ⊗A
(0)
2 ⊕A

(0)
1 ⊗A

(1)
2 ,

with the algebra structure given by

1A1⊗Z2A2 = 1A1 ⊗ 1A2 ,

(a1 ⊗ a2) · (b1 ⊗ b2) = (−1)deg a2 deg b1a1b1 ⊗ a2b2,
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for all homogeneous elements a1, b1 ∈ A1, a2, b2 ∈ A2. The functional ϕ1 ⊗ ϕ2

is simply the tensor product, i.e. (ϕ1 ⊗ ϕ2)(a1 ⊗ a2) = ϕ1(a1) ⊗ ϕ2(a2) for all
a1 ∈ A1, a2 ∈ A2. It is easy to see that ϕ1 ⊗ ϕ2 is again even, if ϕ1 and ϕ2 are
even. The inclusions i1 : (A1, ϕ1) → (A1 ⊗Z2 A2, ϕ1 ⊗ ϕ2) and i2 : (A2, ϕ2) →
(A1 ⊗Z2 A2, ϕ1 ⊗ ϕ2) are defined by

i1(a1) = a1 ⊗ 1A2 and i2(a2) = 1A1 ⊗ a2,

for a1 ∈ A1, a2 ∈ A2.
If the underlying algebras are assumed to have an involution and the functionals

to be states, then the involution on the Z2-graded tensor product is defined by
(a1⊗a2)∗ = (−1)deg a1 deg a2a∗1⊗a∗2, this gives the category of Z2-graded ∗-algebraic
probability spaces.

The notion of independence associated to this tensor category with inclusions
is called Fermi independence or anti-symmetric independence.

Proposition 6.6. Two random variables j1 : (B1, ψ1)→ (A, ϕ) and j2 : (B2, ψ2)→
(A, ϕ), defined on two Z2-graded algebraic probability spaces (B1, ψ1), (B2, ψ2) and
with values in the same Z2-algebraic probability space (A, ϕ) are independent if
and only if the following two conditions are satisfied.

(i): The images of j1 and j2 satisfy the commutation relations

j2(a2)j1(a1) = (−1)deg a1 deg a2j1(a1)j2(a2)

for all homogeneous elements a1 ∈ B1, a2 ∈ B2.
(ii): ϕ satisfies the factorization property

ϕ
(
j1(a1)j2(a2)

)
= ϕ

(
j1(a1)

)
ϕ
(
j2(a2)

)
,

for all a1 ∈ B1, a2 ∈ B2.

Proof. The proof is similar to that of Proposition ??, we will only outline it. It
is clear that the morphism h : (B1, ψ1) ⊗Z2 (B2, ψ2) → (A, ϕ) that makes the
diagram in Definition ?? commuting, has to act on elements of B1 ⊗ 1B2 and
1B1 ⊗ B2 as

h(b1 ⊗ 1B2) = j1(b1) and h(1B1 ⊗ b2) = j2(b2).

This extends to a homomorphism from (B1, ψ1)⊗Z2 (B2, ψ2) to (A, ϕ), if and only
if the commutation relations are satisfied. And the resulting homomorphism is
a quantum random variable, i.e. satisfies ϕ ◦ h = ψ1 ⊗ ψ2, if and only if the
factorization property is satisfied. � �

6.1.3. Example: Free Independence. We will now introduce another tensor prod-
uct with inclusions for the category of algebraic probability spaces AlgProb. On
the algebras we take simply the free product of algebras with identifications of
units introduced in Example 6.1. This is the coproduct in the category of alge-
bras, therefore we also have natural inclusions. It only remains to define a unital
linear functional on the free product of the algebras.
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Voiculescu’s[VDN92] free product ϕ1 ∗ ϕ2 of two unital linear functionals ϕ1 :
A1 → C and ϕ2 : A2 → C can be defined recursively by

(ϕ1 ∗ ϕ2)(a1a2 · · · am) =
∑

I${1,...,m}

(−1)m−]I+1(ϕ1 ∗ ϕ2)

(
→∏
k∈I

ak

)∏
k 6∈I

ϕεk(ak)

for a typical element a1a2 · · · am ∈ A1

∐
A2, with ak ∈ Aεk , ε1 6= ε2 6= · · · 6= εm,

i.e. neighboring a’s don’t belong to the same algebra. ]I denotes the number
of elements of I and

∏→
k∈I ak means that the a’s are to be multiplied in the

same order in which they appear on the left-hand-side. We use the convention
(ϕ1 ∗ ϕ2)

(∏→
k∈∅ ak

)
= 1.

It turns out that this product has many interesting properties, e.g., if ϕ1 and
ϕ2 are states, then their free product is a again a state. For more details, see
[BNT05] and the references given there.

6.1.4. Examples: Boolean, Monotone, and Anti-monotone Independence. Ben
Ghorbal and Schürmann[BG01, BGS99] and Muraki[Mur03] have also consid-
ered the category of non-unital algebraic probability nuAlgProb consisting of
pairs (A, ϕ) of a not necessarily unital algebra A and a linear functional ϕ. The
morphisms in this category are algebra homomorphisms that leave the functional
invariant. On this category we can define three more tensor products with inclu-
sions corresponding to the boolean product �, the monotone product . and the
anti-monotone product / of states. They can be defined by

ϕ1 � ϕ2(a1a2 · · · am) =
m∏
k=1

ϕεk(ak),

ϕ1 . ϕ2(a1a2 · · · am) = ϕ1

(
→∏

k:εk=1

ak

) ∏
k:εk=2

ϕ2(ak),

ϕ1 / ϕ2(a1a2 · · · am) =
∏
k:εk=1

ϕ1(ak) ϕ2

(
→∏

k:εk=2

ak

)
,

for ϕ1 : A1 → C and ϕ2 : A2 → C and a typical element a1a2 · · · am ∈ A1

∐
A2,

ak ∈ Aεk , ε1 6= ε2 6= · · · 6= εm, i.e. neighboring a’s don’t belong to the same
algebra. Note that for the algebras and the inclusions we use here the free product
without units, the coproduct in the category of not necessarily unital algebras.

The monotone and anti-monotone product are not commutative, but related
by

ϕ1 . ϕ2 = (ϕ2 / ϕ1) ◦ γA1,A2 ,

for all linear functionals ϕ1 : A1 → C, ϕ2 : A2 → C, where γA1,A2 : A1

∐
A2 →

A2

∐
A1 is the commutativity constraint (for the commutativity constraint for

the free product of unital algebras see Equation (6.1)). The boolean product is
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commutative, i.e. it satisfies

ϕ1 � ϕ2 = (ϕ2 � ϕ1) ◦ γA1,A2 ,

for all linear functionals ϕ1 : A1 → C, ϕ2 : A2 → C.

Exercise 6.7. The boolean, the monotone and the anti-monotone product can
also be defined for unital algebras, if they are in the range of the unitization
functor introduced in Exercise 6.3.

Let ϕ1 : A1 → C and ϕ2 : A2 → C be two unital functionals on algebras
A1, A2, which can be decomposed as A1 = C1 ⊕ A0

1, A2 = C1 ⊕ A0
2. Then

we define the boolean, monotone, or anti-monotone product of ϕ1 and ϕ2 as the
unital extension of the boolean, monotone, or anti-monotone product of their
restrictions ϕ1|A0

1
and ϕ2|A0

2
.

Show that this leads to the following formulas.

ϕ1 � ϕ2(a1a2 · · · an) =
n∏
i=1

ϕεi(ai),

ϕ1 . ϕ2(a1a2 · · · an) = ϕ1

(∏
i:εi=1

ai

) ∏
i:εi=2

ϕ2(ai),

ϕ1 / ϕ2(a1a2 · · · an) =
∏
i:εi=1

ϕ1(ai)ϕ2

(∏
i:εi=2

ai

)
,

for a1a2 · · · an ∈ A1

∐
A2, ai ∈ A0

εi
, ε1 6= ε2 6= · · · 6= εn. We use the convention

that the empty product is equal to the unit element.

These products can be defined in the same way for ∗-algebraic probability
spaces, where the algebras are unital ∗-algebras having such a decomposition
A = C1⊕A0 and the functionals are states. To check that ϕ1 �ϕ2, ϕ1 .ϕ2, ϕ1 /ϕ2

are again states, if ϕ1 and ϕ2 are states, one can verify that the following con-
structions give their GNS representations. Let (π1, H1, ξ1) and (π2, H2, ξ2) denote
the GNS representations of (A1, ϕ1) and (A2, ϕ2). The GNS representations of
(A1

∐
A2, ϕ1 � ϕ2), (A1

∐
A2, ϕ1 . ϕ2), and (A1

∐
A2, ϕ1 / ϕ2) can all be defined

on the Hilbert space H = H1 ⊗ H2 with the state vector ξ = ξ1 ⊗ ξ2. The
representations are defined by π(1) = id and

π|A0
1

= π1 ⊗ P2, π|A0
2

= P1 ⊗ π2, for ϕ1 � ϕ2,
π|A0

1
= π1 ⊗ P2, π|A0

2
= idH2 ⊗ π2, for ϕ1 . ϕ2,

π|A0
1

= π1 ⊗ idH2 , π|A0
2

= P1 ⊗ π2, for ϕ1 / ϕ2,

where P1, P2 denote the orthogonal projections P1 : H1 → Cξ1, P2 : H2 → Cξ2.
For the boolean case, ξ = ξ1⊗ ξ2 ∈ H1⊗H2 is not cyclic for π, only the subspace
Cξ ⊕H0

1 ⊕H0
2 can be generated from ξ.
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6.2. Classification of the universal independences. The associativity gives
us the condition

(6.2)
(
(ϕ1 · ϕ2) · ϕ3

)
◦ αA1,A2,A3 = ϕ1 · (ϕ2 · ϕ3),

for all (A1, ϕ1), (A2, ϕ2), (A3, ϕ3) in AlgProb. Denote the unique unital func-
tional on C1 by δ, then the unit properties are equivalent to

(ϕ · δ) ◦ ρA = ϕ and (δ · ϕ) ◦ λA = ϕ,

for all (A, ϕ) in AlgProb. The inclusions are random variables, if and only if

(6.3) (ϕ1 · ϕ2) ◦ iA1 = ϕ1 and (ϕ1 · ϕ2) ◦ iA2 = ϕ2

for all (A1, ϕ1), (A2, ϕ2) in AlgProb. Finally, from the functoriality of � we get
the condition

(6.4) (ϕ1 · ϕ2) ◦ (j1

∐
j2) = (ϕ1 ◦ j1) · (ϕ2 ◦ j2)

for all pairs of morphisms j1 : (B1, ψ1) → (A1, ϕ1), j2 : (B2, ψ2) → (A2, ϕ2) in
AlgProb.

Our Conditions (6.2), (6.3), and (6.4) are exactly the axioms (P2), (P3), and
(P4) in Ben Ghorbal and Schürmann[BGS99], or the axioms (U2), the first part
of (U4), and (U3) in Muraki[Mur03].

Theorem 6.8. (Muraki[Mur03], Ben Ghorbal and Schürmann[BG01, BGS99])
There exist exactly two universal tensor products with inclusions on the category
of algebraic probability spaces AlgProb, namely the universal version ⊗̃ of the
tensor product defined in Section 6.1.1 and the one associated to the free product
∗ of states.

For the classification in the non-unital case, Muraki imposes the additional
condition

(6.5) (ϕ1 · ϕ2)(a1a2) = ϕε1(a1)ϕε2(a2)

for all (ε1, ε2) ∈
{

(1, 2), (2, 1)
}

, a1 ∈ Aε1 , a2 ∈ Aε2 .

Theorem 6.9. (Muraki[Mur03]) There exist exactly five universal tensor prod-
ucts with inclusions satisfying (6.5) on the category of non-unital algebraic prob-
ability spaces nuAlgProb, namely the universal version ⊗̃ of the tensor product
defined in Section 6.1.1 and the ones associated to the free product ∗, the boolean
product �, the monotone product . and the anti-monotone product /.

The monotone and the anti-monotone are not symmetric, i.e. (A1

∐
A2, ϕ1.ϕ2)

and (A2

∐
A2, ϕ2.ϕ1) are not isomorphic in general. Actually, the anti-monotone

product is simply the mirror image of the monotone product,

(A1

∐
A2, ϕ1 . ϕ2) ∼= (A2

∐
A1, ϕ2 / ϕ1)

for all (A1, ϕ1), (A2, ϕ2) in the category of non-unital algebraic probability spaces.
The other three products are symmetric.
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In the symmetric setting of Ben Ghorbal and Schürmann, Condition (6.5) is not
essential. If one drops it and adds symmetry, one finds in addition the degenerate
product

(ϕ1 •0 ϕ2)(a1a2 · · · am) =

{
ϕε1(a1) if m = 1,
0 if m > 1.

and families
ϕ1 •q ϕ2 = q

(
(q−1ϕ1) · (q−1ϕ2)

)
,

parametrized by a complex number q ∈ C\{0}, for each of the three symmetric
products, • ∈ {⊗̃, ∗, �}.

If one adds the condition that products of states are again states, then one can
also show that the constant has to be equal to one.

Exercise 6.10. Consider the category of non-unital ∗-algebraic probability spaces,
whose objects are pairs (A, ϕ) consisting of a not necessarily unital ∗-algebra A
and a state ϕ : A → C. Here a state is a linear functional ϕ : A → C whose
unital extension ϕ̃ : Ã ∼= C1 ⊕A → C, λ1 + a 7→ ϕ̃(λ1 + a) = λ + ϕ(a), to the
unitization of A is a state.

Assume we have products · : S(A1)×S(A2)→ S(A1

∐
A2) of linear functionals

on non-unital algebras A1,A2 that satisfy

(ϕ1 · ϕ2)(a1a2) = c1ϕ1(a1)ϕ2(a2),

(ϕ1 · ϕ2)(a2a1) = c2ϕ1(a1)ϕ2(a2),

for all linear functionals ϕ1 : A1 → C, ϕ2 : A2 → C, and elements a1 ∈ A1,
a2 ∈ A2 with “universal” constants c1, c2 ∈ C, i.e. constants that do not depend
on the algebras, the functionals, or the algebra elements. That for every universal
independence such constants have to exist is part of the proof of the classifications
in [BG01, BGS99, Mur03].

Show that if the products of states are again states, then we have c1 = c2 = 1.
Hint: Take for A1 and A2 the algebra of polynomials on R and for ϕ1 and ϕ2

evaluation in a point.

The proof of the classification of universal independences can be split into three
steps.

Using the “universality” or functoriality of the product, one can show that
there exist some “universal constants” - not depending on the algebras - and a
formula for evaluating

(ϕ1 · ϕ2)(a1a2 · · · am)

for a1a2 · · · am ∈ A1

∐
A2, with ak ∈ Aεk , ε1 6= ε2 6= · · · 6= εm, as a linear

combination of products ϕ1(M1), ϕ2(M2), where M1, M2 are “sub-monomials” of
a1a2 · · · am. Then in a second step it is shown by associativity that only products
with ordered monomials M1, M2 contribute. This is the content of [BGS02,
Theorem 5] in the commutative case and of [Mur03, Theorem 2.1] in the general
case.
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The third step, which was actually completed first in both cases, see [Spe97]
and [Mur02], is to find the conditions that the universal constants have to satisfy,
if the resulting product is associative. It turns out that the universal coefficients
for m > 5 are already uniquely determined by the coefficients for 1 ≤ m ≤ 5.
Detailed analysis of the non-linear equations obtained for the coefficients of order
up to five then leads to the classifications stated above.

7. Lévy Processes on Dual Groups

We now want to study quantum stochastic processes whose increments are free
or independent in the sense of boolean, monotone, or anti-monotone indepen-
dence. The approach based on bialgebras that we followed in the first Section
works for the tensor product and fails in the other cases because the correspond-
ing products are not defined on the tensor product, but on the free product of the
algebra. The algebraic structure which has to replace bialgebras was first intro-
duced by Voiculescu [Voi87, Voi90], who named them dual groups. In this section
we will introduce these algebras and develop the theory of their Lévy processes.
It turns out that Lévy processes on dual groups with boolean, monotonically, or
anti-monotonically independent increments can be reduced to Lévy processes on
involutive bialgebra. We do not know if this is also possible for Lévy processes
on dual groups with free increments.

In the literature additive free Lévy processes have been studied most inten-
sively, see, e.g., [GSS92, Bia98, Ans02, Ans03, BNT02b, BNT02a].

7.1. Preliminaries on dual groups. Denote by ComAlg the category of com-
mutative unital algebras and let B ∈ ObComAlg be a commutative bialgebra.
Then the mapping

ObComAlg 3 A 7→ MorComAlg(B,A)

can be understood as a functor from ComAlg to the category of unital semigroups.
The multiplication in MorAlg(B,A) is given by the convolution, i.e.

f ? g = mA ◦ (f ⊗ g) ◦∆B

and the unit element is εB1A. A unit-preserving algebra homomorphism h : A1 →
A2 gets mapped to the unit-preserving semigroup homomorphism MorComAlg(B,A1) 3
f → h ◦ f ∈ MorComAlg(B,A2), since

h ◦ (f ? g) = (h ◦ f) ? (h ◦ g)

for all A1,A2 ∈ ObComAlg, h ∈ MorComAlg(A1,A2), f, g ∈ MorComAlg(B,A1).
If B is even a commutative Hopf algebra with antipode S, then MorComAlg(B,A)

is a group with respect to the convolution product. The inverse of a homomor-
phism f : B → A with respect to the convolution product is given by f ◦ S.
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The calculation

(f ? g)(ab) = mA ◦ (f ⊗ g) ◦∆B(ab)

= f(a(1)b(1))g(a(2)b(2)) = f(a(1))f(b(1))g(a(2))g(b(2))

= f(a(1))g(a(2))f(b(1))g(b(2)) = (f ? g)(a)(f ? g)(b)

shows that the convolution product f ? g of two homomorphisms f, g : B → A
is again a homomorphism. It also gives an indication why non-commutative
bialgebras or Hopf algebras do not give rise to a similar functor on the category
of non-commutative algebras, since we had to commute f(b(1)) with g(a(2)).

Zhang [Zha91], Berman and Hausknecht [BH96] showed that if one replaces
the tensor product in the definition of bialgebras and Hopf algebras by the free
product, then one arrives at a class of algebras that do give rise to a functor
from the category of non-commutative algebras to the category of semigroups or
groups.

A dual group [Voi87, Voi90] (called H-algebra or cogroup in the category of
unital associative ∗-algebras in [Zha91] and [BH96], resp.) is a unital ∗-algebra B
equipped with three unital ∗-algebra homomorphisms ∆ : B → B

∐
B, S : B → B

and ε : B → C (also called comultiplication, antipode, and counit) such that(
∆
∐

id
)
◦∆ =

(
id
∐

∆
)
◦∆,(7.1) (

ε
∐

id
)
◦∆ = id =

(
id
∐

ε
)
◦∆,(7.2)

mB ◦
(
S
∐

id
)
◦∆ = id = mB ◦

(
id
∐

S
)
◦∆,(7.3)

where mB : B
∐
B → B, mB(a1⊗a2⊗· · ·⊗an) = a1·a2· ··· ·an, is the multiplication

of B. Besides the formal similarity, there are many relations between dual groups
on the one side and Hopf algebras and bialgebras on the other side, cf. [Zha91].
For example, let B be a dual group with comultiplication ∆, and let R : B

∐
B →

B ⊗ B be the unique unital ∗-algebra homomorphism with

RB,B ◦ i1(b) = b⊗ 1, RB,B ◦ i2(b) = 1⊗ b,
for all b ∈ B. Here i1, i2 : B → B

∐
B denote the canonical inclusions of B into

the first and the second factor of the free product B
∐
B. Then B is a bialgebra

with the comultiplication ∆ = RB,B ◦∆, see [Zha91, Theorem 4.2], but in general
it is not a Hopf algebra.

We will not really work with dual groups, but the following weaker notion.
A dual semigroup is a unital ∗-algebra B equipped with two unital ∗-algebra
homomorphisms ∆ : B → B

∐
B and ε : B → C such that Equations (7.1) and

(7.2) are satisfied. The antipode is not used in the proof of [Zha91, Theorem
4.2], and therefore we also get an involutive bialgebra (B,∆, ε) for every dual
semigroup (B,∆, ε).

Note that we can always write a dual semigroup B as a direct sum B = C1⊕B0,
where B0 = ker ε is even a ∗-ideal. Therefore it is in the range of the unitization
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functor and the boolean, monotone, and anti-monotone product can be defined
for unital linear functionals on B, cf. Exercise 6.7.

The comultiplication of a dual semigroup can also be used to define a convo-
lution product. The convolution j1 ? j2 of two unital ∗-algebra homomorphisms
j1, j2 : B → A is defined as

j1 ? j2 = mA ◦
(
j1

∐
j2

)
◦∆.

As the composition of the three unital ∗-algebra homomorphisms ∆ : B → B
∐
B,

j1

∐
j2 : B

∐
B → A

∐
A, and mA : A

∐
A → A, this is obviously again a unital

∗-algebra homomorphism. Note that this convolution can not be defined for
arbitrary linear maps on B with values in some algebra, as for bialgebras, but
only for unital ∗-algebra homomorphisms.

7.2. Definition of Lévy processes on dual groups.

Definition 7.1. Let j1 : B1 → (A,Φ), . . . , jn : Bn → (A,Φ) be quantum ran-
dom variables over the same quantum probability space (A,Φ) and denote their
marginal distributions by ϕi = Φ ◦ ji, i = 1, . . . , n. The quantum random vari-
ables (j1, . . . , jn) are called tensor independent (respectively boolean independent,
monotonically independent, anti-monotonically independent or free), if the state
Φ◦mA◦(j1

∐
· · ·
∐
jn) on the free product

∐n
i=1 Bi is equal to the tensor product

(boolean, monotone, anti-monotone, or free product, respectively) of ϕ1, . . . , ϕn.

Note that tensor, boolean, and free independence do not depend on the order,
but monotone and anti-monotone independence do. An n-tuple (j1, . . . , jn) of
quantum random variables is monotonically independent, if and only if (jn, . . . , j1)
is anti-monotonically independent.

We are now ready to define tensor, boolean, monotone, anti-monotone, and
free Lévy processes on dual semigroups.

Definition 7.2. [Sch95] Let (B,∆, ε) be a dual semigroup. A quantum stochastic
process {jst}0≤s≤t≤T on B over some quantum probability space (A,Φ) is called
a tensor (resp. boolean, monotone, anti-monotone, or free) Lévy process on the
dual semigroup B, if the following four conditions are satisfied.

(1) (Increment property) We have

jrs ? jst = jrt for all 0 ≤ r ≤ s ≤ t ≤ T,

jtt = ε1A for all 0 ≤ t ≤ T.

(2) (Independence of increments) The family {jst}0≤s≤t≤T is tensor indepen-
dent (resp. boolean, monotonically, anti-monotonically independent, or
free) w.r.t. Φ, i.e. the n-tuple (js1t2 , . . . , jsntn) is tensor independent (resp.
boolean, monotonically, anti-monotonically independent, or free) for all
n ∈ N and all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn ≤ T .

(3) (Stationarity of increments) The distribution ϕst = Φ ◦ jst of jst depends
only on the difference t− s.
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(4) (Weak continuity) The quantum random variables jst converge to jss in
distribution for t↘ s.

Remark 7.3. The independence property depends on the products and therefore
for boolean, monotone and anti-monotone Lévy processes on the choice of a
decomposition B = C1 ⊕ B0. In order to show that the convolutions defined by
(ϕ1�ϕ2)◦∆, (ϕ1.ϕ2)◦∆, and (ϕ1/ϕ2)◦∆ are associative and that the counit ε acts
as unit element w.r.t. these convolutions, one has to use the universal property
[BGS99, Condition (P4)], which in our setting is only satisfied for morphisms that
respect the decomposition. Therefore we are forced to choose the decomposition
given by B0 = ker ε.

The marginal distributions ϕt−s := ϕst = Φ◦jst form again a convolution semi-
group {ϕt}t∈R+ , with respect to the tensor (boolean, monotone, anti-monotone,
or free respectively) convolution defined by (ϕ1⊗̃ϕ2)◦∆ ((ϕ1�ϕ2)◦∆, (ϕ1.ϕ2)◦∆,
(ϕ1 /ϕ2)◦∆, or (ϕ1 ∗ϕ2)◦∆, respectively). It has been shown that the generator
ψ : B → C,

ψ(b) = lim
t↘0

1

t

(
ϕt(b)− ε(b)

)
is well-defined for all b ∈ B and uniquely characterizes the semigroup {ϕt}t∈R+ ,
cf. [Sch95, BGS99, Fra01].

Denote by S be the flip map S : B
∐
B → B

∐
B, S = mB

∐
B ◦ (i2

∐
i1), where

i1, i2 : B → B
∐
B are the inclusions of B into the first and the second factor of

the free product B
∐
B. The flip map S acts on i1(a1)i2(b1) · · · i2(bn) ∈ B

∐
B

with a1, . . . , an, b1, . . . , bn ∈ B as

S
(
i1(a1)i2(b1) · · · i2(bn)

)
= i2(a1)i1(b1) · · · i1(bn).

If j1 : B → A1 and j2 : B → A2 are two unital ∗-algebra homomorphisms,
then we have (j2

∐
j1) ◦ S = γA1,A2 ◦ (j1

∐
j2). Like for bialgebras, the opposite

comultiplication ∆op = S ◦ ∆ of a dual semigroup (B,∆, ε) defines a new dual
semigroup (B,∆op, ε).

Lemma 7.4. Let {jst : B → (A,Φ)}0≤s≤t≤T be a quantum stochastic process on
a dual semigroup (B,∆, ε) and define its time-reversed process {jop

st }0≤s≤t≤T by

jop
st = jT−t,T−s

for 0 ≤ s ≤ t ≤ T .

(i) The process {jst}0≤s≤t≤T is a tensor (boolean, free, respectively) Lévy pro-
cess on the dual semigroup (B,∆, ε) if and only if the time-reversed process
{jop
st }0≤s≤t≤T is a tensor (boolean, free, respectively) Lévy process on the

dual semigroup (B,∆op, ε).
(ii) The process {jst}0≤s≤t≤T is a monotone Lévy process on the dual semi-

group (B,∆, ε) if and only if the time-reversed process {jop
st }0≤s≤t≤T is an

anti-monotone Lévy process on the dual semigroup (B,∆op, ε).
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Proof. The equivalence of the stationarity and continuity property for the quan-
tum stochastic processes {jst}0≤s≤t≤T and {jop

st }0≤s≤t≤T is clear.
The increment property for {jst}0≤s≤t≤T with respect to ∆ is equivalent to the

increment property of {jop
st }0≤s≤t≤T with respect to ∆op, since

mA ◦
(
jop
st

∐
jop
tu

)
◦∆op = mA ◦

(
jT−t,T−s

∐
jT−u,T−t

)
◦ S ◦∆

= mA ◦ γA,A ◦
(
jT−u,T−t

∐
jT−t,T−s

)
◦∆

= mA ◦
(
jT−u,T−t

∐
jT−t,T−s

)
◦∆

for all 0 ≤ s ≤ t ≤ u ≤ T .
If {jst}0≤s≤t≤T has monotonically independent increments, i.e. if the n-tuples

(js1t2 , . . . , jsntn) are monotonically independent for all n ∈ N and all 0 ≤ s1 ≤ t1 ≤
s2 ≤ · · · ≤ tn, then the n-tuples (jsntn , . . . , js1t1) = (jop

T−tn,T−sn , . . . , j
op
T−t1,T−s1) are

anti-monotonically independent and therefore {jop
st }0≤s≤t≤T has anti-monotonically

independent increments, and vice versa.
Since tensor and boolean independence and freeness do not depend on the or-

der, {jst}0≤s≤t≤T has tensor (boolean, free, respectively) independent increments,
if and only {jop

st }0≤s≤t≤T has tensor (boolean, free, respectively) independent in-
crements. � �

Schürmann and Voss [SV12] have given a new proof of Schoenberg’s, using
ideas from [SSV10], that includes also the free convolution. This shows that Lévy
processes on dual semigroups are in one-to-one correspondence with generating
functionals, i.e. hermitian, conditionally positive linear functionals that vanish
on the identity.

Theorem 7.5. (Schoenberg correspondence) Let {ϕt}t≥0 be a convolution
semigroup of unital functionals with respect to the tensor, boolean, monotone, or
anti-monotone convolution on a dual semigroup (B,∆, ε) and let ψ : B → C be
defined by

ψ(b) = lim
t↘0

1

t

(
ϕt(b)− ε(b)

)
for b ∈ B. Then the following statements are equivalent.

(i) ϕt is positive for all t ≥ 0.
(ii) ψ is hermitian and conditionally positive.
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[Sch93] M. Schürmann. White Noise on Bialgebras, volume 1544 of Lecture Notes in Math.
Springer-Verlag, Berlin, 1993.

[Sch95a] M. Schürmann. Direct sums of tensor products and non-commutative independence.
J. Funct. Anal., 1995.
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