What is Quantum Probability? Why do we need Quantum Probability?

Uwe Franz

UFC, Besançon, Gdt Probabilités Quantiques

Mardi le 14 mai 2013

The most fundamental definition in quantum (or noncommutative) probability:

Definition

A quantum probability space is a pair (A, φ) consisting of a (Von Neumann) algebra A and a (normal) state $\varphi : A \to \mathbb{C}$.

Question

How can this definition be motivated? What does it "mean"?

Classical probability spaces

Recall

Definition

- A "classical" probability space is a triple (Ω, \mathcal{F}, P) where
 - Ω is a set, the sample space, the set of all possible outcomes.
 - $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is the set of events.
 - $P: \mathcal{F} \to [0,1]$ assign to each event its probability.

This description of randomness is based on the idea that randomness is due to a lack of information.

If we knew which $\omega\in\Omega$ is realized, then the randomness disappears.

"Classical" probability spaces as special cases of quantum probability spaces

Example (Classical \subseteq Quantum)

To a classical probability space (Ω, \mathcal{F}, P) we can associate a quantum probability space (A, φ) , take

- A = L[∞](Ω, F, P), the algebra of bounded measurable fonctions
 f : Ω → C, called the algebra of random variables or observables.
- $\varphi : A \ni f \mapsto E(f) = \int_{\Omega} f dP$, which assigns to each random variable/observable its expected value.

 (Ω, \mathcal{F}, P) and (A, P) are essentially equivalent (by the spectral theorem).

Exemple (Quantum mechanics)

Let *H* be a Hilbert space, with a unit vector ψ (or a density matrix ρ). Then the quantum probability space associated to (H, ψ) (or (H, ρ) is given by

A = B(H), the algebra bounded linear operators X : H → H.
 Self-adjoint (or normal) operators can be considered as quantum random variables or observables.

•
$$\varphi : B(H) \ni X \mapsto \varphi(X) = \langle \psi, X\psi \rangle \text{ (or } \varphi(X) = \operatorname{tr}(\rho X)).$$

Question

Is "quantum randomness" different from "classical randomness"?

States, observables, measurements

Suppose from now on that H is a finite dimensional complex Hilbert space.

Spectral theorem

If $X \in B(H)$ is an observable (i.e. a self-adjoint operator = hermitian matrix), then it can be written as

$$X = \sum_{\lambda \in \sigma(X)} \lambda E_{\lambda}$$

where $\sigma(X)$ denotes the spectrum of X (= set of eigenvalues) and E_{λ} the orthogonal projection onto the eigenspace of X associated to the eigenvalue λ .

States, observables, measurements

Von Neumann's Collapse Postulate

A measurement of the observable X on a quantum system in the state ρ yields the value $\lambda \in \sigma(X)$ with probability

$$p_{\lambda} = \operatorname{tr}(\rho E_{\lambda})$$

where $\ensuremath{\mathrm{tr}}$ denotes the normalised trace.

If the observed value is λ , then the state "collapses" to

$$\tilde{\rho}_{\lambda} = \frac{E_{\lambda}\rho E_{\lambda}}{\operatorname{tr}(\rho E_{\lambda})}.$$

$Quantum \rightarrow Classical$

To each observable X in a quantum probability space we can associate a classical probability space, $\Omega = \sigma(X)$, $P(\{\lambda\}) = tr(\rho E_{\lambda})$.

$Dictionary \ ``Classical \leftrightarrow Quantum''$

	Classical	Quantum	
sample space	a set $\Omega = \{\omega_1, \ldots, \omega_n\}$	a Hilbert space $H = \mathbb{C}^n$	
events	subsets of Ω that	the orthogonal projections	
	form a σ -algebra	in H , they form a lattice,	
	(also a Boolean algebra)	which is not Boolean (or	
		distributive), e.g., in	
		general $E \wedge (F_1 \vee F_2) eq$	
		$(E \wedge F_1) \vee (E \wedge F_2)$	
random	measurable functions	self-adjoint operators	
variables/	$f:\Omega ightarrow\mathbb{R}$	$X: H ightarrow H$, $X^* = X$	
observables	form a commutative	span a non-commutative	
	(von Neumann) algebra	(von Neumann) algebra	
	to each event $E\in \mathcal{F}$	event are observables	
	we get a r.v. 1_E	with values in $\{0,1\}$.	
		Note that $E_\lambda = 1_{\{\lambda\}}(X).$	

イロト イポト イヨト イヨト

$Dictionary "Classical \leftrightarrow Quantum"$

	Classical	Quantum
probability	a countably additive	a density matrix, i.e. a
distribution/	function $P:\mathcal{F} ightarrow [0,1]$	pos. operator with $\mathrm{tr}(ho)=1$
state	determined by <i>n</i> pos. real	
	numbers $p_k = P(\{\omega_k\})$	$\Pr(X = \lambda) = \operatorname{tr}(\rho E_{\lambda}),$
	s.t. $\sum_{k=1}^{n} p_k = 1$	$\Pr(X \in E) = \operatorname{tr}(\rho 1_E(X)),$
	$P(E) = \sum_{\omega \in E} P(\{\omega\})$	$1_{E}(X) = \sum_{\lambda \in E \cap \sigma(X)} E_{\lambda}$).
expectation	$E(f) = \int_{\Omega} f \mathrm{d}P$	$E(X) = \operatorname{tr}(\rho X)$
	$=\sum_{k=1}^{n}f(\omega)P(\{\omega\})$	
variance	$\operatorname{Var}(f) = E(f^2) - E(f)^2$	$\operatorname{Var}_{\rho}(X)$
		$= \operatorname{tr}(\rho X^2) - \left(\operatorname{tr}(\rho X)\right)^2.$

イロト イポト イヨト イヨト

Dictionary "Classical \leftrightarrow Quantum"

	Classical	Quantum
Extreme	the set of all probability	the extreme points of the
points	distribution on Ω	set $\mathcal{S}(H)$ of states on H
	is a compact convex set	are exactly the one-dim.
	exactly <i>n</i> extreme points	projections onto the rays
	δ_{ω_k} , $k=1,\ldots,n$.	$\mathbb{C}u$, $u \in H$ a unit vector.
	if ${\it P}=\delta_{\omega_k}$, then the	if $\rho = P_u$ then $Var(X) =$
	the distribution of any r.v. f	$= (X - \langle u, Xu \rangle)u ^2$
	is contentrated in one point	thus $Var(X) = 0$ if and only if
	(namely $f(\omega_k)$).	if u is an eigenvector of X .
		Degeneracy of the state does
		not kill the uncertainty of
		the obervables!

Dictionary "Classical \leftrightarrow Quantum"

	Classical	Quantum
Product	given two systems described	given two systems described
spaces	by $(\Omega_i, \mathcal{F}_i, P_i)$, $i = 1, 2$	by $(H_i, \rho_i), i = 1, 2$
systems	then	then
	$(\Omega_1 imes \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, P_1 \otimes P_2)$	$(H_1\otimes H_2, ho_1\otimes ho_2)$
	describes both independent	describes both independent
	systems as a single system	systems as a single system
		ightarrow independence
		ightarrow entanglement
reversible	bijective (measurable) maps	unitary operators
dynamics	$T:\Omega ightarrow \Omega$	$U: H \to H$
	$f \mapsto f \circ T$ (for r.v.)	Heisenberg: $X \mapsto U^* X U$
	$P\mapsto P\circ T^{-1}$ (for prob.)	Schrödinger: $ ho\mapsto U ho U^*$
		or $\psi\mapsto U\psi.$

Three distinguishing features (1)

Theorem

E, F projections on H s.t. $EF \neq FE$. Then

$E \lor F \not\leq E + F$.

Corollary

E, *F* projections on *H* s.t. $EF \neq FE$. Then, for some state ρ ,

 $\operatorname{tr}\rho(E \vee F) \not\leq \operatorname{tr}\rho E + \operatorname{tr}\rho F.$

Three distinguishing features (2)

Theorem (Heisenberg Uncertainty)

X, Y observables, ρ a state. Then

$$\begin{aligned} \operatorname{Var}_{\rho}(X)\operatorname{Var}_{\rho}(Y) &\geq \left(\operatorname{tr}\rho\frac{1}{2}(XY+YX)\right)^{2} + \left(\operatorname{tr}\rho\frac{i}{2}(XY-YX)\right)^{2} \\ &\geq \frac{1}{2}\left(\operatorname{tr}\rho i[X,Y]\right)^{2}. \end{aligned}$$

Extreme points

Extremal states (= one-dimensional projections) are called pure states. The set of all pure states on an *n*-dimensional complex Hilbert space is a real manifold of dimesnsion 2n - 2. The set of all extremal probability measures on a sample space of *n* points has cardinality *n*. Let *H* be a separabe Hilbert space and denote by $\mathcal{P}(H)$ the set of orthogonal projections on *H*.

Definition

A map $P : \mathcal{P}(H) \rightarrow [0, 1]$ is called an additive probability measure on $\mathcal{P}(H)$ if $P(id_H) = 1$ and

$$P\left(\sum_{k=1}^{n} E_k\right) = \sum_{k=1}^{n} P(E_k)$$

for all $n \ge 1$ and all families E_1, \ldots, E_n of pairwise orthogonal projections. If the additivity condition holds also for countable families, then we say that P is a σ -additive probability measure on $\mathcal{P}(H)$

Gleason's theorem

Theorem

Let $\dim H \ge 3$. Then each additive measure on $\mathcal{P}(H)$ can be uniquely extended to a state on $\mathcal{B}(H)$. Conversly the restriction of every state to $\mathcal{P}(H)$ is a additive measure on $\mathcal{P}(H)$.

The same holds for σ -additive probability measures and normal states: Every σ -additive probability measure can be extended to a normal state and every normal state restricts to a σ -additive probability measure.

The Kochen-Specker theorem

Definition

A valuation (or "dispersion-free" additive probability measure) is an additive probability measure $P : \mathcal{P}(H) \to \{0, 1\}$.

Remark

 \rightarrow realistic non-contextual models / hidden variables.

Theorem

Let $\dim(H) \geq 3$. Then there exists no valuation on $\mathcal{P}(H)$.

This theorem proves that they exist no "realistic non-contextual" models of quantum probability.

$One \ q\text{-}bit$

Example: $spin-\frac{1}{2}$ or polarisation of a photon

 $H = \mathbb{C}^2$. The most general state vector is of the form

$$\psi = \cos \frac{\theta}{2} |0\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle = \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \end{pmatrix}$$

with $\theta \in [0, \pi)$, $\phi \in [0, 2\pi)$, $|0\rangle = |\uparrow\rangle$, $|1\rangle = |\downarrow\rangle$, and can be visualized as the point (θ, ϕ) on the unit sphere (Bloch sphere) in \mathbb{R}^3 , i.e. the vector

$$\left(\begin{array}{c}\cos\phi\sin\theta\\\sin\phi\sin\theta\\\cos\theta\end{array}\right)$$

UWE FRANZ	(UFC)	1

One q-bit

Example: spin- $\frac{1}{2}$ or polarisation of a photon, cont'd

Density matrices are of the form

$$\rho(x, y, z) = \frac{l + x\sigma_x + y\sigma_y + z\sigma_z}{2}$$

with $x, y, z \in \mathbb{R}$, $x^2 + y^2 + z^2 \leq 1$, where

$$I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ \sigma_x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \ \sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \ \sigma_x = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Note that

$$|\psi\rangle\langle\psi| = \frac{1}{2} \left(\begin{array}{c} 1 + \cos\theta & e^{-i\phi}\sin\theta\\ e^{i\phi}\sin\theta & 1 - \cos\theta \end{array}\right) = \rho \left(\begin{array}{c} \cos\phi\sin\theta\\ \sin\phi\sin\theta\\ \cos\theta \end{array}\right).$$

UWE FRANZ (UFC)

э

$One \ q\text{-}bit$

Example: spin- $\frac{1}{2}$ or polarisation of a photon, cont'd

Observables (self-adjoint operators) are of the form

 $X = a |\psi\rangle \langle \psi| + b |\psi_{\perp}\rangle \langle \psi_{\perp}|,$

for $a, b \in \mathbb{R}$, ψ a unit vector, ψ_{\perp} orthogonal to ψ (unique up to a phase). In an experiment, X takes values a and b, with probabilities

$$P(X = a) = \varphi(|\psi\rangle\langle\psi|)$$
 and $P(X = b) = \varphi(|\psi_{\perp}\rangle\langle\psi_{\perp}|)$

E.g., for $\phi = \langle \psi', \cdot \psi' \rangle$ the vector state associated to $\psi' = \cos \frac{\theta'}{2} |0\rangle + e^{i\phi'} \sin \frac{\theta'}{2} |1\rangle$, we get

$$P(X = a) = |\langle \psi, \psi'
angle|^2 = rac{1 + \cos \vartheta}{2}$$
 and $P(X = b) = rac{1 - \cos \vartheta}{2}$

where ϑ is the angle between ψ and ψ' on the Bloch sphere.

UWE FRANZ (UFC)