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Quantum probability spaces

The most fundamental definition in quantum (or noncommutative)
probability:

Definition

A quantum probability space is a pair (A, ϕ) consisting of a (Von
Neumann) algebra A and a (normal) state ϕ : A→ C.

Question

How can this definition be motivated? What does it “mean”?
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Classical probability spaces

Recall

Definition

A “classical” probability space is a triple (Ω,F ,P) where

Ω is a set, the sample space, the set of all possible outcomes.

F ⊆ P(Ω) is the set of events.

P : F → [0, 1] assign to each event its probability.

This description of randomness is based on the idea that randomness is
due to a lack of information.
If we knew which ω ∈ Ω is realized, then the randomness disappears.
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“Classical” probability spaces as special cases of
quantum probability spaces

Example (Classical ⊆ Quantum)

To a classical probability space (Ω,F ,P) we can associate a quantum
probability space (A, ϕ), take

A = L∞(Ω,F ,P), the algebra of bounded measurable fonctions
f : Ω→ C, called the algebra of random variables or observables.

ϕ : A 3 f 7→ E (f ) =
∫

Ω f dP, which assigns to each random
variable/observable its expected value.

(Ω,F ,P) and (A,P) are essentially equivalent (by the spectral theorem).
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Quantum probability spaces

Exemple (Quantum mechanics)

Let H be a Hilbert space, with a unit vector ψ (or a density matrix ρ).
Then the quantum probability space associated to (H, ψ) (or (H, ρ) is
given by

A = B(H), the algebra bounded linear operators X : H → H.
Self-adjoint (or normal) operators can be considered as quantum
random variables or observables.

ϕ : B(H) 3 X 7→ ϕ(X ) = 〈ψ,Xψ〉 (or ϕ(X ) = tr(ρX )).

Question

Is “quantum randomness” different from “classical randomness”?
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States, observables, measurements

Suppose from now on that H is a finite dimensional complex Hilbert space.

Spectral theorem

If X ∈ B(H) is an observable (i.e. a self-adjoint operator = hermitian
matrix), then it can be written as

X =
∑

λ∈σ(X )

λEλ

where σ(X ) denotes the spectrum of X (= set of eigenvalues) and Eλ the
orthogonal projection onto the eigenspace of X associated to the
eigenvalue λ.
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States, observables, measurements

Von Neumann’s Collapse Postulate

A measurement of the observable X on a quantum system in the state ρ
yields the value λ ∈ σ(X ) with probability

pλ = tr(ρEλ)

where tr denotes the normalised trace.
If the observed value is λ, then the state “collapses” to

ρ̃λ =
EλρEλ
tr(ρEλ)

.

Quantum → Classical

To each observable X in a quantum probability space we can associate a
classical probability space, Ω = σ(X ), P({λ}) = tr(ρEλ).
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Dictionary “Classical ↔ Quantum”

Classical Quantum

sample space a set Ω = {ω1, . . . , ωn} a Hilbert space H = Cn

events subsets of Ω that the orthogonal projections
form a σ-algebra in H, they form a lattice,
(also a Boolean algebra) which is not Boolean (or

distributive), e.g., in
general E ∧ (F1 ∨ F2) 6=

(E ∧ F1) ∨ (E ∧ F2)

random measurable functions self-adjoint operators
variables/ f : Ω→ R X : H → H, X ∗ = X
observables form a commutative span a non-commutative

(von Neumann) algebra (von Neumann) algebra
to each event E ∈ F event are observables
we get a r.v. 1E with values in {0, 1}.

Note that Eλ = 1{λ}(X ).
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Dictionary “Classical ↔ Quantum”

Classical Quantum

probability a countably additive a density matrix, i.e. a
distribution/ function P : F → [0, 1] pos. operator with tr(ρ) = 1
state determined by n pos. real

numbers pk = P({ωk}) Pr(X = λ) = tr(ρEλ),
s.t.

∑n
k=1 pk = 1 Pr(X ∈ E ) = tr(ρ1E (X )),

P(E ) =
∑

ω∈E P({ω}) 1E (X ) =
∑

λ∈E∩σ(X ) Eλ).

expectation E (f ) =
∫

Ω f dP E (X ) = tr(ρX )
=
∑n

k=1 f (ω)P({ω})
variance Var(f ) = E (f 2)− E (f )2 Varρ(X )

= tr(ρX 2)−
(
tr(ρX )

)2
.
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Dictionary “Classical ↔ Quantum”

Classical Quantum

Extreme the set of all probability the extreme points of the
points distribution on Ω set S(H) of states on H

is a compact convex set are exactly the one-dim.
exactly n extreme points projections onto the rays
δωk

, k = 1, . . . , n. Cu, u ∈ H a unit vector.
if P = δωk

, then the if ρ = Pu then Var(X ) =
the distribution of any r.v. f = ||(X − 〈u,Xu〉)u||2
is contentrated in one point thus Var(X ) = 0 if and only if
(namely f (ωk)). if u is an eigenvector of X .

Degeneracy of the state does
not kill the uncertainty of
the obervables!
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Dictionary “Classical ↔ Quantum”

Classical Quantum

Product given two systems described given two systems described
spaces by (Ωi ,Fi ,Pi ), i = 1, 2 by (Hi , ρi ), i = 1, 2
systems then then

(Ω1 × Ω2,F1 ⊗F2,P1 ⊗ P2) (H1 ⊗ H2, ρ1 ⊗ ρ2)
describes both independent describes both independent
systems as a single system systems as a single system

→ independence
→ entanglement

reversible bijective (measurable) maps unitary operators
dynamics T : Ω→ Ω U : H → H

f 7→ f ◦ T (for r.v.) Heisenberg: X 7→ U∗XU
P 7→ P ◦ T−1 (for prob.) Schrödinger: ρ 7→ UρU∗

or ψ 7→ Uψ.

Uwe Franz (UFC) Intro QP Mardi le 14 mai 2013 11 / 20



Three distinguishing features (1)

Theorem

E ,F projections on H s.t. EF 6= FE . Then

E ∨ F 6≤ E + F .

Corollary

E ,F projections on H s.t. EF 6= FE . Then, for some state ρ,

trρ(E ∨ F ) 6≤ trρE + trρF .
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Three distinguishing features (2)

Theorem (Heisenberg Uncertainty)

X ,Y observables, ρ a state. Then

Varρ(X )Varρ(Y ) ≥
(
trρ

1

2
(XY + YX )

)2

+

(
trρ

i

2
(XY − YX )

)2

≥ 1

2

(
trρi [X ,Y ]

)2
.
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Three distinguishing features (3)

Extreme points

Extremal states (= one-dimensional projections) are called pure states.
The set of all pure states on an n-dimensional complex Hilbert space is a
real manifold of dimesnsion 2n − 2.
The set of all extremal probability measures on a sample space of n points
has cardinality n.
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Gleason’s theorem

Let H be a separabe Hilbert space and denote by P(H) the set of
orthogonal projections on H.

Definition

A map P : P(H)→ [0, 1] is called an additive probability measure on
P(H) if P(idH) = 1 and

P

(
n∑

k=1

Ek

)
=

n∑
k=1

P(Ek)

for all n ≥ 1 and all families E1, . . . ,En of pairwise orthogonal projections.
If the additivity condition holds also for countable families, then we say
that P is a σ-additive probability measure on P(H)
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Gleason’s theorem

Theorem

Let dimH ≥ 3. Then each additive measure on P(H) can be uniquely
extended to a state on B(H). Conversly the restriction of every state to
P(H) is a additive measure on P(H).
The same holds for σ-additive probability measures and normal states:
Every σ-additive probability measure can be extended to a normal state
and every normal state restricts to a σ-additive probability measure.
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The Kochen-Specker theorem

Definition

A valuation (or “dispersion-free” additive probability measure) is an
additive probability measure P : P(H)→ {0, 1}.

Remark

→ realistic non-contextual models / hidden variables.

Theorem

Let dim(H) ≥ 3. Then there exists no valuation on P(H).

This theorem proves that they exist no “realistic non-contextual” models
of quantum probability.
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One q-bit

Example: spin-1
2 or polarisation of a photon

H = C2. The most general state vector is of the form

ψ = cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉 =

(
cos θ2

e iφ sin θ
2

)
.

with θ ∈ [0, π), φ ∈ [0, 2π), |0〉 = | ↑〉, |1〉 = | ↓〉, and can be visualized as
the point (θ, φ) on the unit sphere (Bloch sphere) in R3, i.e. the vector cosφ sin θ

sinφ sin θ
cos θ

 .

Uwe Franz (UFC) Intro QP Mardi le 14 mai 2013 18 / 20



One q-bit

Example: spin-1
2 or polarisation of a photon, cont’d

Density matrices are of the form

ρ(x , y , z) =
I + xσx + yσy + zσz

2

with x , y , z ∈ R, x2 + y2 + z2 ≤ 1, where

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
.

Note that

|ψ〉〈ψ| =
1

2

(
1 + cos θ e−iφ sin θ
e iφ sin θ 1− cos θ

)
= ρ

 cosφ sin θ
sinφ sin θ

cos θ

 .
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One q-bit

Example: spin-1
2 or polarisation of a photon, cont’d

Observables (self-adjoint operators) are of the form

X = a|ψ〉〈ψ|+ b|ψ⊥〉〈ψ⊥|,

for a, b ∈ R, ψ a unit vector, ψ⊥ orthogonal to ψ (unique up to a phase).
In an experiment, X takes values a and b, with probabilities

P(X = a) = ϕ
(
|ψ〉〈ψ|

)
and P(X = b) = ϕ

(
|ψ⊥〉〈ψ⊥|

)
E.g., for φ = 〈ψ′, ·ψ′〉 the vector state associated to
ψ′ = cos θ

′

2 |0〉+ e iφ
′
sin θ′

2 |1〉, we get

P(X = a) =
∣∣〈ψ,ψ′〉|2 =

1 + cosϑ

2
and P(X = b) =

1− cosϑ

2

where ϑ is the angle between ψ and ψ′ on the Bloch sphere.
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