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Abstract. A simplification of the proof of classification theorem for natu-
ral notions of stochastic independence is given. This simplification is made
possible after adding the positivity condition to the algebraic axioms for a
(non-symmetric) universal product (= a natural product). Indeed this simpli-
fication is nothing but a simplification, under the positivity, of the proof of the
claim that, for any natural product, the ‘wrong-ordered’ coefficients all vanish
in the expansion form. The known proof of this claim involves a cumbersome
process of solving a system of quadratic equations in 102 unknowns, but in our
new proof under the positivity we can avoid such a process.

1. Introduction

In non-commutative probability theory, there exist several different notions of
stochastic independence, for example, tensor independence (= classical indepen-
dence), free independence, Boolean independence and monotone independence
(see the references in [1, 4] for the detailed explanations).
This phenomena is very specific to the non-commutative situation because in

the commutative case there exisits the only one notion of independence, i.e. tensor
independence. We expect that based on the various notions of independence
one can develope various probability theories in some way parallel to classical
probability theory.
A classification program for universal notions of stochastic independence was

carried out in a series of papers [5, 6, 1, 3, 4]. In [5] Schürmann proposed that
universal notions of stochastic independence should be formulated as universal
products among non-commutative probability spaces. In [6, 1] Speicher (in the
expansion form), and Ghorbal and Schürmann (in form of the canonical axioms)
proved that the only possible ‘symmetric’(or ‘commutative’) universal products
are 3 products: tensor, free and boolean product. Extending this result to the
non-symmetric case, we proved in [3] (in the expansion form) and in [4] (in the
form of canonical axioms) that the only possible ‘non-symmetric’ universal prod-
ucts (= natural products) are 5 products: tensor, free, boolean, monotone, and
anti-monotone product.
However the proof of the classification theorem for natural products (Theorem

2.2 in [4]) contains a cumbersome step with complicated calculations, unfortu-
nately. The claim of the step is that the coefficient t(π, λ; σ), which is associated
to a given natural product, vanishes whenever the partition σ is ‘wrong-ordered’.
Here the explanations of coefficient t(π, λ; σ) and ‘wrong-orderedness’ will be
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given in Section 3 of the present paper. In [4], to complete this step, a system
of quadratic equations in 102 unknowns was solved by hands. This is heavy
calculations that consists of 22 pages in [4] in its compact form.
The aim of this paper is to improve this cumbersome proof for the claim (V): the

vanishment of wrong coefficients {t(π, λ;σ)}, into the more clear proof, without
using such a big system of equations. However this simplification for the proof
of the claim (V) is made possible after adding the condition of positivity (P) to
the algebraic axioms for a natural product. Up to now we dont know if such a
simplification for the proof of the claim (V) is possible or not, without using the
positivity (P).
This paper consists of the following sections. In Section 2 we prepare some

notations concerning partitions of a finite linearly ordered set. In Section 3, after
introducing some conditions on a product among algebraic probability spaces
(universality, associativity, positivity, etc), we explain the relation beteween the
classification theorem for natural products and the vanishment result (V). In
Section 4 we give a simple proof of the vanishment result (V) under the positivity
assumption (P), which avoids the use of a big system of equations.
Through out the paper, C is the field of complex numbers, N∗ is the set of all

natural numbers (6= 0), and #A or |A| denotes the cardinality of a finite set A.

2. Notations on Partitions

Here we describe some notations on partitions used in this paper (see [4]).
Let S be a finite linearly ordered set. A collection π = {U1, U2, · · · , Up} of

subsets of S is called a partition of S if S = ∪p
i=1Ui, Ui 6= ∅, and Ui∩Uj = ∅ for

all i, j ∈ {1, 2, · · · , p}. A pair (π, λ) = {U1 ≺ U2 ≺ · · · ≺ Up} of a partition π and
a linear ordering λ among blocks in π is called a linearly ordered partition of S (see
[3]). A collection π = {U1, U2, · · · , Up} of finite sequences U of elements from S is
called a BGS-partition of S if #{i1, i2, · · · , ik} = k for each U = (i1i2 · · · ik) ∈ π
and if π := {U1, U2, · · ·Up} is a (usual) partition of S (see [1]). Here we put
U := {i1, i2, · · · , ik} for U = (i1i2 · · · ik) ∈ π. For each block U in a BGS-partition
π, we put lg(U) := #(U) the length of U .

Denote by P(S), LP (S) and ~P(S), the set of all partitions, linearly ordered
partitions and BGS-partitions of S, respectively. For each BGS-partition σ =
{U1, U2, · · · , Up} in ~P(S), there exists naturally the associated usual partition in
P(S) given by σ := {U1, U2, · · · , Up}. Conversely we identify P(S) as the subset

of ~P(S) through the natural correspondence π 7→ π′ given by π 3 Uq = {i1 <
i2 < · · · < ik} 7→ U ′ = (i1i2 · · · ik) ∈ π′.
For usual partitions π, σ ∈ P(S), we write σ ≤ π when σ is a refinement of

π, i.e. when 〈 ∀U ∈ σ, ∃V ∈ π s.t. U ⊂ V 〉. When the ordered set S is given

by {1, 2, · · · , n} with the natural order, we write P(n), LP(n), ~P(n) in stead of

P(S), LP(S), ~P(S), respectively.

3. Classification Theorem and Vanishment Result

In this section we describe the relation between the classfication theorem and
the vanishment result (V). For the detailes see [4].
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An algebraic probability space (ϕ,A) is a pair of an associative C-algebra A and
a C-linear functional ϕ over A. Denote by K the class of all algebraic probability
spaces (ϕ,A). We do not assume the existence of unit elements for these algebras
A. Denote by A′ the set of all C-linear finctionals ϕ over A. Also denote by A1t
A2 the free product of algebras A1 and A2. Then for any algebra homomorphisms
jl : Bl → Al (l = 1, 2), there exists a unique algebra homomorphism j1 q j2 :
B1 t B2 → A1 t A2 such that il ◦ jl = (j1 q j2) ◦ ιl for all l = 1, 2. Here
il : Al → A1 t A2 (l = 1, 2) and ιl : Bl → B1 t B2 (l = 1, 2) are the natural
embedings. We write the ‘expectation’ of a ∈ A w.r.t ϕ by ϕ[a] in stead of ϕ(a).
Any map � : K × K → K :

(
(ϕ1,A1), (ϕ2,A2)

)
7→ (ϕ1�ϕ2,A1 t A2) is called

a product over K. For simplicity we used here the same symbol � to denote two
different levels of operations.
A natural product � is a product over K satisfying the following four conditions.
(N1) universality: For any algebra homomorphisms jl : Bl → Al and any

ϕl ∈ Al
′ (l = 1, 2), we have

(ϕ1�ϕ2) ◦ (j2 q j2) = (ϕ1 ◦ j1)�(ϕ2 ◦ j2).
(N2) associativity: For all (ϕl,Al) ∈ K (l = 1, 2, 3), we have

(ϕ1�ϕ2)�ϕ3 = ϕ1�(ϕ2�ϕ3)

under the identification (A1 t A2) t A3 = A1 t (A2 t A3).
(N3) extension: For all (ϕl,Al) ∈ K (l = 1, 2), we have

(ϕ1�ϕ2) ◦ il = ϕl (l = 1, 2),

where il are the natural embedings of Al to the free product A1 t A2.
(N4) factorization: For all (ϕl,Al) ∈ K (l = 1, 2), we have

(ϕ1�ϕ2)[i1(a)i2(b)] = (ϕ1�ϕ2)[i2(b)i1(a)] = ϕ1[a]ϕ2[b]

for all a ∈ A1 and b ∈ A2.

The notion of natural product is nothing but a modification, to the non-
symmetric case, of the notion of universal product of Schürmann in [5]. In [4] we
proved the following classification theorem for natural products.

Theorem 3.1. There exist exactly 5 natural products: tensor, free, Boolean,
monotone and anti-monotone product.

Here we omit the definitions of these 5 products (tensor, free, Boolean, mono-
tone and anti-monotone), because in our discussions in the present paper, we
have no need to know them. For the detailed explanation on these products and
independences, see the references in [1, 4].
The strategy to prove Theorem 3.1 is to reduce this Theorem 3.1 to the next

Theorem 3.2 through Theorem 3.3 and Theorem 3.4. It is the same strategy as
that in the case of ‘symmetric’ products in [1] but in our non-symmetric case we
must take care of some ordere structures on partitions.
Let us prepare some notations for the description of these Theorems. Let

(π, λ) = {V1 ≺ V2 ≺ · · · ≺ Vp} ∈ LP(n) be a linearly ordered partition, and
(ϕl,Al)

p
l=1 be a family of algebraic probability spaces. Then we simply write

3



a1a2 · · · an ∈ A(π,λ) to denote the situation that a1 ∈ Al1 , a2 ∈ Al2 , · · · , an ∈ Aln

and that lk = q if and only if k ∈ Vq. We always identify a ∈ Al with its natural

image il(a) ∈ qp
l=1Al. Let a1a2 · · · an ∈ A(π,λ) and σ ∈ ~P(n) with σ ≤ π be fixed,

then we put for each U = (i1i2 · · · ik) ∈ σ

ϕU [a1, a2, · · · , an] := ϕl(U)[aU ] := ϕl(U)[ai1ai2 · · · aik ].

Here l(U) is the label l ∈ {1, 2, · · · , p} such that lis = l for all is ∈ U .

A quasi-universal product � is a product over K satisfying the following three
conditions.
(Q1) associativity: same as (N2)
(Q2) quasi-universal calculation rule for mixed moments: There exists a family

of constants {
t(π, λ; ρ)

∣∣∣∣ ρ ∈ P(n), ρ ≤ π,
(π, λ) ∈ LP(n), n ∈ N∗

}
such that, for any p-tuple (ϕl,Al)

p
l=1 of algebraic probability spaces, and ϕ =

�p
l=1ϕl, we have

ϕ[a1a2 · · · an] =
∑
ρ ≤ π

t(π, λ; ρ)
∏
U∈ρ

ϕU [a1, a2, · · · , an],

whenever a1a2 · · · an ∈ A(π,λ) with (π, λ) = {V1 ≺ V2 ≺ · · · ≺ Vp}.
(Q3) normalization:

t(1) = t(12) = t(21) = 1.

Here we put t(s) := t(π, λ) := t(π, λ;π), where s = (s1s2 · · · sn) is the associated
sequence to (π, λ) defind by the condition that si = l if and only if i ∈ Vl.

Theorem 3.2. There exist exactly 5 quasi-universal products: tensor, free,
Boolean, monotone and anti-monotone product.

Theorem 3.2 was proved in [3] based on the method of Speicher in [6]. The
following expansion theorem (Theorem 3.3) was shown in [4] as a result by a
direct application of theory of universal families of Ben Ghorbal and Schürmann
[1].

Theorem 3.3. Let a natural product � be given. Then there exists uniquely a
family of constants {

t(π, λ;σ)

∣∣∣∣ σ ∈ ~P(n), σ ≤ π,
(π, λ) ∈ LP(n), n ∈ N∗

}
such that, for any p-tuple (ϕl,Al)

p
l=1 of algebraic probability spaces, and ϕ =

�p
l=1ϕl, we have

ϕ[a1a2 · · · an] =
∑

σ ∈ ~P(n)
σ ≤ π

t(π, λ; σ)
∏
U∈σ

ϕU [a1, a2, · · · , an],

whenever a1a2 · · · an ∈ A(π,λ) with (π, λ) = {V1 ≺ V2 ≺ · · · ≺ Vp}.
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Let σ ∈ ~P(n) be a BGS-partition. A block U = (i1i2 · · · ik) in σ is said to be
wrong-ordered if there exist a, b ∈ {1, 2, · · · , k} such that a < b but ia > ib. A
BGS-partition σ is said to be wrong-ordered if there exists in σ a wrong-ordered
block U . Let {t(π, λ;σ)} be the coefficients associated to a natural product �
in Theorem 3.3. A coefficient t(π, λ, σ) is said to be wrong-ordered if σ is wrong-
ordered. In [4] we proved the following vanishment result. We denote it by (V).

Theorem 3.4. For any natural product, its wrong-ordered coefficients all van-
ish.

Theorem 3.4 implies that any natural product is a quasi-universal product, and
hence we reach to the classification Theorem 3.1 through Theorem 3.2.
However the proof of the vanishment result (V) (Theorem 3.4) given in [4] is a

cumbersome one consisting of elementary but heavy calculations, unfortunately.
Therefore for the clear understanding of the classification theorem, it is desirable
to improve this heavy proof into the more light one. We give in Section 4 such
a simplified proof for the vanishment result under some additional condition of
positivity (P) for natural products.

Now let us define the positivity for a product �. Let A be a ∗-algebra and ϕ be

a linear functional over A. The unitization (ϕ̃, Ã) of (ϕ,A) is the pair of a unital

∗-algebra Ã and a unital linear functional ϕ̃ over Ã, defind by Ã := C1Ã ⊕ A
with 1Ã an artificial unit, and ϕ̃[1Ã] = 1, ϕ̃[a] = ϕ[a], a ∈ A. If A is a unital
∗-algebra and ϕ is a unital linear functional over A (ϕ[1A] = 1), then ϕ is a state

on A if and only if ϕ̃ is a state on Ã. A ∗-probability space (A, ϕ) is a pair of a

∗-algebra A and a linear functional ϕ over A such that ϕ̃ is a state on Ã.
A product � over K is said to be positive if it satisfies the following condition.
(P) positivity: For any ∗-algebras Al and any functionals ϕl ∈ A′

l (l = 1, 2),

ϕ̃1�ϕ2 is a state over Ã1 t A2 whenever ϕ̃l is a state over Ãl for each l = 1, 2.
The five products (tensor, free, Boolean, monotone and anti-monotone) are

positive.

Using the positivity (P), we can prove without heavy calculations the following
Theorem 3.5 which we denote by (V+).

Theorem 3.5. For any positive natural product, its wrong-ordered coefficients
all vanish.

The proof (without heavy calculation) of (V+) (Theorem 3.5) will be presented
in Section 4. (V+) implies that any positive natural product is a quasi-universal
product, and hence we immediately reach to the following classification Theorem
3.6 through Theorem 3.2.

Theorem 3.6. There exist exactly 5 positive natural products: tensor, free,
Boolean, monotone and anti-monotone product.
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Now by the same argument in [2] that the four conditions (N1),(N2),(N3) &
(P) implies the condition (N4), we get the following Theorem 3.7.

A positive universal product is a product over K satisfying the four condi-
tions (N1), (N2), (N3) and (P). A product over K is said to be degenerate if
(ϕ1�ϕ2)[a1a2 · · · an] = 0 whenever a1a2 · · · an ∈ A(π,λ) with |π| ≥ 2.

Theorem 3.7. There exist exactly 5 non-degenerate positive universal products:
tensor, free, Boolean, monotone and anti-monotone product.

This is the same theorem as Theorem 2.5 in [2], but this time the proof is
improved so that it is dependent on Theorem 3.6 and hence on (V+) (Theorem
3.5), and not dependent on (V) (Theorem 3.4) with heavy calculations.

4. A Simple Proof of Vanishment Result

In this section we prove the vanishment result (V+)(= Theorem 3.5) not using
heavy algebraic calculations, but using the positivity.
For our purpose it is sufficient to show the following Proposition 4.1 from which

we conclude that t(π, λ;σ0) = 0 for all σ0 ∈ ~P(n) \ P(n).

Proposition 4.1. Let � be a natural product. Then for each n ∈ N∗, each
(π, λ) ∈ LP(n) and each σ0 ∈ ~P(n) \ P(n) with σ0 ≤ π, there exist ∗-probability
spaces (Al, ϕl)

|π|
l=1 and a sequence of elements a1, a2, · · · , an with a1a2 · · · an ∈

A(π,λ) such that for ϕ = �|π|
l=1ϕl we have{

(1)
∏

W∈σ
ϕl(W )[aW ] = δσ,σ0 for all σ ∈ ~P(n) with σ ≤ π,

(2) ϕ
[
a1a2 · · · an] = 0.

At first let us give a construction of (Al, ϕl)
|π|
l=1 and a1, a2, · · · , an. Let (π, λ)

and σ0 be fixed. Suppose that (π, λ) = {V1 ≺ V2 ≺ · · · ≺ V|π|} and σ0 =

{U1, U2, · · · , U|σ0|}. For each block V ∈ π, we put σ0(V ) := {U ∈ σ0|U ⊂ V }.
Then since σ0 ≤ π, we have V =

∪
U∈σ0(V )

U .

For each V ∈ π, let us construct a ∗-probability space (AV , ϕV ) by

AV =
⊕

U∈σ0(V )

BU , ϕV =
1

#(σ0(V ))

( ⊕
U∈σ0(V )

ϕU

)
,

where we put, for each U ∈ σ0(V ), BU = Md(U)(C) the matirix algebra, ϕU(·) =
〈e(U)

1 | · e(U)
1 〉 the state over BU , (e

(U)
i )

d(U)
i=1 the natural CONS of HU := Cd(U), and

d(U) := lg(U) the length of U .

On these ∗-probability spaces (Al, ϕl) := (AVl
, ϕVl

), l = 1, 2, · · · , |π|, we con-
struct the operators a1, a2, · · · , an (a1 ∈ Al1 , a2 ∈ Al2 , · · · , an ∈ Aln) as follows.
For each block U = (i1i2 · · · ik) ∈ σ0 with U ⊂ V and k ≥ 2, we define the
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operators ai1 , ai2 , · · · , aik in AV as the natural extensions

aiq := b̃iq := biq ⊕
(
⊕ U ′ ∈ σ0(V )

U ′ 6= U

0
)

of the operators bi1 , bi2 , · · · , bik in BU given by

(bi1 , bi2 , bi3 , · · · , bik−1
, bik) = (E1,k, Ek,k−1, Ek−1,k−2, · · · , E3,2, E2,1),

where Ei,j are the matrix units in BU , i.e. 〈e(U)
k |Ei,je

(U)
l 〉 = δikδjl. When U ∈

σ0(V ) is a singleton block U = (i), we put ai := b̃i with bi = IU the identity
matrix of BU . These operators ai1 , ai2 , · · · , aik over all U = (i1i2 · · · ik) ∈ σ0 well-
define the operators a1, a2, · · · , an since {1, 2, · · · , n} is the disjoint union of all
U (U ∈ σ0).

Well let us prove the properties (1) and (2) in Proposition 4.1 separately.

Proof of Property (1). We examine, for general σ ∈ ~P(n) with σ ≤ π, the
value of

∏
W∈σ

ϕl(W )[aW ], where we put l(W ) = q if W ⊂ Vq ∈ π. Concerning a

BGS-partition σ with σ ≤ π, we consider the following three cases a), b) and c).

Case a): ∃W ∈ σ,∃U,U ′ ∈ σ0 s.t. W ∩ U 6= ∅, W ∩ U ′ 6= ∅, U 6= U ′. In this
case there exists a common V (∈ π) such that W ∪ U ∪ U ′ ⊂ V . The blocks W ,
U , U ′ can be expressed as W = (ι1ι2 · · · ιs), U = (i1i2 · · · it), U ′ = (j1j2 · · · ju),
respectively. From the assumption there exist some s1, s2 ∈ {1, 2, · · · , s}, t0 ∈
{1, 2, · · · , t} and u0 ∈ {1, 2, · · · , u} such that

aιs1 = ait0 = b̃it0 (bit0 ∈ BU),

aιs2 = aju0 = b̃ju0 (bju0 ∈ BU ′).

Since U ∩ U ′ = ∅ we have Aaιs1Baιs2C = 0 and Aaιs2Baιs1C = 0 for all
A,B,C ∈ AV , and hence aι1aι2 · · · aιs = 0. So we have

∏
W ′∈σ

ϕl(W ′)[aW ′ ] = 0.

Case b): σ ≤ σ0 & σ 6= σ0. In this case there exist W ∈ σ and U ∈ σ0 such that
W ⊂ U & W 6= U . By the way, W and U can be expressed as W = (j1j2 · · · js)
and U = (i1i2 · · · it). Note that {j1, j2, · · · , js} ⊂ {i1, i2 · · · , it} and t ≥ 2.

Let us examine the value of bj1bj2 · · · bjsξ where ξ := e
(U)
1 . For the vector

bjsξ to be non-zero it is necessary that js = it, because bit is the only element
in {bi1 , bi2 , · · · , bit} that corresponds to E2,1 (∈ BU). Next (when t ≥ 3), for
the vector bjs−1bjsξ to be non-zero it is necessary that js = it and js−1 = it−1,
because bit−1 is the only element in {bi1 , bi2 , · · · , bit} that corresponds to E3,2.
Repeating this argument we see that for the vector bj1bj2 · · · bjsξ to be non-zero
it is necessary that (j1j2 · · · js−1js) = (it−s+1it−s+2 · · · it−1it).
Furthermore, for the expectation

ϕU [bj1bj2 · · · bjs ] = 〈ξ|bj1bj2 · · · bjsξ〉

to be non-zero it is necessary that (j1j2 · · · js) = (i1i2 · · · it), because bi1 is the
only element in {bi1 , bi2 , · · · , bit} that corresponds to E1,t. But by the assumption
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we have W = (j1 · · · js) 6= (i1 · · · it) = U , and hence ϕU [bW ] = ϕU [bj1 · · · bjs ] = 0.
Since ϕl(W )[aW ] = ϕV [aW ] = 1

#(σ0(V ))
ϕU [bW ] = 0, we have

∏
W ′∈σ

ϕl(W ′)[aW ′ ] = 0

Case c): σ = σ0. In this case it is clear that
∏

W∈σ
ϕl(W )[aW ] = 1.

From the three cases a),b) and c), we know that the property (1) holds. �

Proof of Property (2). For each block U = (i1i2 · · · ik) ∈ σ0, denote by WP (U)
the set of all wrong-ordered pairs p ⊂ U in a block U , that is,

WP (U) :=

{
p ⊂ U

∣∣∣∣ p = {l,m}, m = ia, l = ib, a < b,
l < m, for some a, b ∈ {1, 2, · · · , lg(U)}

}
.

Put W (U) :=
∪

p∈WP (U)

p and W (σ0) :=
∪

U∈σ0

W (U) . Then U is wrong-ordered

if and only if W (U) 6= ∅. Since σ0 is wrong-ordered, we have W (σ0) 6= ∅. Let us
put v := maxW (σ0). Let U0 be the block in σ0 that contains v, and V0 be the
block in π that contains v. Then obviously v ∈ U0 ⊂ V0 and lg(U0) ≥ 2.

Since v is the largest ‘wrong’ element in {1, 2, · · · , n}, we have {v + 1, v +
2, · · · , n} ∩W (σ0) = ∅, and hence any wrong pair p (∈ WP (U0)) that contains
v must be of the form p = {u, v}, u < v, for some u ∈ W (σ0). From this we see
that the block U0 must be of the form

U0 = (i1 · · · ia · · · ib · · · ik)
= (i1 · · · v · · ·u · · · ik),

where ia = v, ib = u, a < b and u < v for some a, b ∈ {1, 2, · · · , k} and for
some u ∈ U0.

By the way let us estimate the norm of the vector (= an equivalence class)

[avav+1 · · · an] in the GNS-representation space associated to ϕ = �|π|
l=1ϕl. First

we have from Theorem 3.3

‖ [avav+1 · · · an] ‖2

= ϕ
[
(avav+1 · · · an)∗(avav+1 · · · an)

]
= ϕ

[
a∗n · · · a∗v+1a

∗
vavav+1 · · · an

]
= ϕ

[
a∗n · · · a∗v+1(a

∗
vav)av+1 · · · an

]
=

∑
τ ∈ ~P(S)
τ ≤ ρ

t(ρ, µ; τ)
∏
T∈τ

ϕl(T )[cT ].

Here S is the linearly ordered finite set given by

S = {−n,−(n− 1), · · · ,−(v + 1), v, v + 1, · · · , n− 1, n},

(ρ, µ) is the linearly ordered partion of S associated to the sequence

(ln, ln−1, · · · , lv+1, lv, lv+1, · · · , ln−1, ln),
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and c’s are the operators defined by

c−n = a∗n, c−(n−1) = a∗n−1, · · · , c−(v+1) = a∗v+1,

cv = av, cv+1 = av+1, · · · , cn−1 = an−1, cn = an.

Also here we put l(T ) = q if 〈 T ∩Vq 6= ∅ or −T ∩Vq 6= ∅ 〉 with −T := {−m|m ∈
T}.

For each block τ ∈ ~P(S) with τ ≤ ρ, there exists a unique block T0 ∈ τ such
that T0 3 v. Also let R0 be the unique block in ρ such that R0 3 v, then we have
T0 ⊂ R0. Since u /∈ {v, v+1, · · · , n}, we have u /∈ T0, and hence {a∗u, au}∩{cm|m ∈
T0} = ∅. From the definition of the operators ai1 , · · · , aia , · · · , aib , · · · , aik (∈ AV0)
based on the block U0 = (i1 · · · ia · · · ib · · · ik) with ia = v, ib = u, we see that

au = Ẽ
(U0)
N+1,N with N = (k − b) + 1,

av = Ẽ
(U0)
M+1,M with M = (k − a) + 1 for a ≥ 2,

av = Ẽ
(U0)
1,k for a = 1.

So we have cv = a∗vav = Ẽ
(U0)
M,M for a ≥ 2, and cv = a∗vav = Ẽ

(U0)
k,k for a = 1. Put

cT0
:= {cm|m ∈ T0}, aU0

:= {am|m ∈ U0} and a∗
U0

:= {a∗m|m ∈ U0}. Then we

have

{cv} ⊂ cT0
⊂

(
(aU0

∪ a∗
U0
) \ {au, a∗u, av, a∗v}

)
∪ {cv}.

This means
{
Ẽ

(U0)
M,M

}
⊂ cT0

and

cT0
⊂

((
aU0

∪ a∗
U0

)
\
{
Ẽ

(U0)
N+1,N , Ẽ

(U0)
N,N+1, Ẽ

(U0)
M+1,M , Ẽ

(U0)
M,M+1

})
∪ {Ẽ(U0)

M,M}

for a ≥ 2, and means
{
Ẽ

(U0)
k,k

}
⊂ cT0

and

cT0
⊂

((
aU0

∪ a∗
U0

)
\
{
Ẽ

(U0)
N+1,N , Ẽ

(U0)
N,N+1, Ẽ

(U0)
1,k , Ẽ

(U0)
k,1

})
∪ {Ẽ(U0)

k,k }

for a = 1.

Put T∗ :=
(
T0∪(−T0)

)
∩{v, v+1, · · · , n}, then T0 ⊂ T∗∪(−T∗). For simplicity

we denote E
(U0)
i,j by Ei,j. Concerning T∗, we consider the following three cases a),

b) and c).

Case a): ∃m ∈ T∗ s.t. m /∈ U0. In this case there exists m′ ∈ S and U ′ ∈ σ0

such that cm′ = am = b̃m or cm′ = a∗m = b̃∗m with bm ∈ U ′ and U ′ 6= U0. So
we have two operators bm (or b∗m) ∈ BU ′ and bv ∈ BU0 with U ′ ∩ U0 = ∅ so that

{b̃v, b̃m} ⊂ cT0
or {b̃v, b̃∗m} ⊂ cT0

. This implies ϕl(T0)[cT0 ] = 0.
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Case b): T∗ ⊂ U0 & ia = v (a ≥ 2). In this case let dm (m ∈ T0) be the

operators in BU0 such that cm = d̃m. Then we have in the algebra BU0

{EM,M} ⊂ dT0
⊂ {E1,k, Ek,k−1, · · · , ÊM+1,M , · · · , ÊN+1,N , · · · , E3,2, E2,1}

∪ {E1,2, E2,3, · · · , ÊN,N+1, · · · , ÊM,M+1, · · · , Ek−1,k, Ek,1}
∪ {EM,M}

with 1 ≤ N < M ≤ k− 1. Here the symbol ‘̂’ denotes the omission. Since there
are two gaps {N,N + 1} and {M,M + 1} in the circle graph (minus two edges)

{{1, 2}, {2, 3}, {3, 4}, · · · , {k − 1, k}, {k, 1}} \ {{N,N + 1}, {M,M + 1}}

with N < M , the vertex M cannot be connected to the vertex 1. So there
is no path such that starting from the vertex 1, passing through the vertex
M and finally arriving at the vertex 1 again. This implies that ϕl(T0)[cT0 ] =

〈ξ|dι1 · · · dιtξ〉 = 0 with T0 = (ι1 · · · ιt) and ξ = e
(U0)
1 .

Case c): T∗ ⊂ U0 & ia = v (a = 1). In this case let dm (m ∈ T0) be the same
as above. Then we have in BU0

{Ek,k} ⊂ dT0
⊂ {Ek,k−1, · · · , ÊN+1,N , · · · , E3,2, E2,1}

∪ {E1,2, E2,3, · · · , ÊN,N+1, · · · , Ek−1,k}
∪ {Ek,k}.

Since there is one gap {N,N + 1} in the linear graph (minus one edge)

{{1, 2}, {2, 3}, {3, 4}, · · · , {k − 1, k}} \ {{N,N + 1}}

with N ≤ k− 1, the vertex k cannot be connected to the vertex 1. So there is no
path such that starting from the vertex 1, passing through the vertex k and finally
arriving at the vertex 1 again. This implies that ϕl(T0)[cT0 ] = 〈ξ|dι1 · · · dιtξ〉 = 0.

For each cases a), b) and c), we have

‖ [avav+1 · · · an] ‖2 =
∑

τ ∈ ~P(S)
τ ≤ ρ

t(ρ, µ; τ)
∏
T∈τ

ϕl(T )[cT ] = 0.

Hence we get by the Cauchy-Schwartz inequality

|ϕ[a1 · · · av−1av · · · an]| ≤‖ [a1 · · · av−1] ‖ ‖ [av · · · an] ‖= 0. �

Now we complete the simplified proof for (V+) (= Theorem 3.5).
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[5] M. Schürmann, Direct sums of tensor products and non-commutative independence, J.
Funct. Anal. 133 (1995), pp. 1–9.

[6] R. Speicher, On uiversal products, in: Free Probability Theory, D. Voiculescu (Ed.), Fields
Inst. Commun. Vol.12, Amer. Math. Soc., Providence, RI, 1997, pp.257–266.

Mathematics Laboratory, Iwate Prefectural University, Takizawa, Iwate 020-
0193, Japan

E-mail address: muraki@iwate-pu.ac.jp

11


