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» Irreversible dynamics: Markov semigroups T = (Tt)t€R+
unital
T;: 8 — 8
cP
> Semireversible dynamics: Eq—Semigroups & = (9t)er

unital (faithful)
A —m—m—
endomorphisms

Tt

> : B B
embedding iJ/ T]E ( 1 ioEis cond. exp.)
A A

dt
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: Unitaries u; € A such that ug: = urS¢(us)

= 8 = uSi(e)u; is Eo—semigroup ( )

A basic problem of quantum probability:

Given T, find $ and u; such that ¢ := 8" is a dilation. ‘
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» T — E®: Via Paschke’s GNS-construction for T;! (1973!)

» Special case: dion A ~ (A=4yhA. (a.a :=(a)a’)
» < E® more interesting for A = B2(E). (Arveson for H.)
» Finally, also T on B2(E) plays a role.

Also CP-semigroups and E—semigroups.
Also multi-parameter case. (Or more general semigroups.)
(= relations with multivariate operator theory.)



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))

An Eq—semigroup 9 is spatial if it admits a semigroup of
intertwining isometries (uy): d:(a)u; = uga.



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))
An Ey—semigroup 9 is if it admits a
(Ut).' ﬁt(a)ut = Uuza.
Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a
semigroup (c;) such that T; — ¢/ e ¢; is CP for all t.



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))
An Ey—semigroup 9 is if it admits a
(Ut).' ﬁt(a)ut = Uuza.
Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a (sufficiently continuous!)
semigroup (c;) such that Ty — ¢; e ¢; is CP for all t.



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))
An Ey—semigroup 9 is if it admits a
(Ut).' ﬁt(a)ut = Uuza.
Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a (sufficiently continuous!)
semigroup (c;) such that Ty — ¢; e ¢; is CP for all t.

(Note: Powers 2004 requires semigroup of intertwining isometries,
which is more restrictive.)



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))
An Ey—semigroup 9 is if it admits a
(Ut).' ﬁt(a)ut = Uuza.
Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a (sufficiently continuous!)
semigroup (c;) such that Ty — ¢; e ¢; is CP for all t.

(Note: Powers 2004 requires semigroup of intertwining isometries,
which is more restrictive.)

Definition (MS 2006 (preprint 2001))

A is a pair (E®, w®)



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))
An Ey—semigroup 9 is if it admits a
(Ut).' ﬁt(a)ut = Uuza.
Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a (sufficiently continuous!)
semigroup (c;) such that Ty — ¢; e ¢; is CP for all t.

(Note: Powers 2004 requires semigroup of intertwining isometries,
which is more restrictive.)

Definition (MS 2006 (preprint 2001))

A is a pair (E®, w®) consisting of a PS E®
and central unital w°.



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))

An Ep—semigroup ¢ is if it admits a
(Ut).' ﬁt(a)ut = Uuza.

Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a (sufficiently continuous!)
semigroup (c;) such that Ty — ¢; e ¢; is CP for all t.

(Note: Powers 2004 requires semigroup of intertwining isometries,
which is more restrictive.)

Definition (MS 2006 (preprint 2001))

A is a pair (E®, w®) consisting of a PS E®
and central unital w°.
o (a)t,wt> =1.



Markov semigroups, Eq—semigroups, product systems

Spatial dynamics and spatial product systems
Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))

An Ep—semigroup ¢ is if it admits a
(Ut).' ﬁt(a)ut = Uuza.

Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is if admits a (sufficiently continuous!)
semigroup (c;) such that Ty — ¢; e ¢; is CP for all t.

(Note: Powers 2004 requires semigroup of intertwining isometries,
which is more restrictive.)

Definition (MS 2006 (preprint 2001))

A is a pair (E®, w®) consisting of a PS E®
and central unital w®.
g (a)t,cut> =1. o bwt = wtb.
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Recall: E = 4Eg and F = gF¢ correspondences
~ aE © F¢ generated by x © y subject to

xoy,xoy) = y.xxY) akxoy) = (ax)oy.

Definition
A is a family E® = (E;)ier, of correspondences

over B with Ey = B and bilinear unitaries us;: Es © Et — Eg4,
such that:

» The “product” xsy: == Ust(Xs © y;) is associative.
> Up; and uip reduce to the left and right action of Eg = B on E;.

Definition
A £° = (ét)ter, is a section such that és&1 = és1+ and &g = 1.
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Consequence:

(Est1, DEstt) = (§s O &1, bEs O &r) = (&1, (Es, bESHEr),
~» the maps T; := (&, &;) form an (obviously CP-)semigroup.
Definition
A pair (E®, £°) is the (unique) of a
CP-semigroup T if Ty = (&;, &) and if £&© generates E°.
Theorem (Bhat-MS 2000)

Every (one-parameter) CP-semigroup (on a necessarily unital
C*-algebra) has a GNS-construction.

Note: T unital < &° unital ((&1,&) = 1).
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Suppose GNS-T embeds into spatial PS:  (E®, £°, w°).
Then c¢; :=<(wt, &) formsemigroupin B and Ti—ciec is

(&1, &) — (& wp) o (wr, &) = ((id —wiw))ér, o(id —wiw) )ér),

and, clearly, CP, so T is spatial.
Note: Strongly continuous units in (strongly) continuous PS, then
all semigroups

(1?’0 1?’1) _ (<wt,-wt> (@r, o§t>) _ (idz; .C,)

T T \Eewy) (& 0ér) cie Ti

are strongly continuous.

» C*—case: c; is norm continuous and T has CE-generator.
(Defi. cont. PS by MS 2003 (preprint 2001).)

» vN-case: Much more interesting. (Much weaker topology!)
(Defi. strongly cont. PS by MS 2009 (preprint).)
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Spatial CP-semigroups
Theorem (Bhat-Liebscher-MS 2010)

C*—case: A strongly continuous CP-semigroup is spatial iff its
GNS-system embeds into a continuous spatial product system.

Proof of “only if”: Suppose strongly continuous T; dominates
c; e ¢ for continuous ¢;. Then

0 3N\ fidg ec| (0 0 L (45 ec
0 3 T ge Ti) T 0 Ti—ciec) \cie ciec)

is a strongly continuous CP-semigroup on Mx(8).
Barreto-Bhat-Liebscher-MS 2004 and MS 2009 (preprint):
There exists continuous (E®, &2, w®). O

Theorem (MS 2009 (preprint))

VN-case: A strongly continuous CP-semigroup is spatial iff its
GNS-system is a strongly continuous spatial product system.
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Spatial versus Fock

General:
» Spatial+uniformly continuous = GNS c Fock.

» (More precisely: A continuous set of units among which there
is one w® generates Fock.)

C*—case:
» Spatial = uniformly continuous = GNS c Fock.

» Barreto-Bhat-Liebscher-MS 2004: Uniformly continuous
(=: ) = GNS c Fock.

» Bhat-Liebscher-MS 2010: GNS c Fock =% GNS = Fock.
vN-case (Barreto-Bhat-Liebscher-MS 2004):

» Uniformly continuous = spatial.
(Equivalent to Christensen-Evans 1979. Cf. Raja’s talk.)

» Sub Fock = Fock.
» Uniformly continuous = spatial = GNS = Fock.
» MS 2009 (preprint): Spatial = GNS spatial.
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» Ba Cr-algebra. E = Eg a Hilbert 8—module.
» For convenience: E full, that is, span(E, E) = 8.
» 9 = (91)=0 Strict Eo—semigroup on B2(E).
span:(EE*)E = E.
Theorem (Bhat 1996 (B(H)), MS 2002, 2009 (preprint 2004))
There is a unique full product system E® and a family of unitaries

vi: EO Ey — E such that 91(a) = vi(a ©id;)v;.

» With xy; := vi(x©y:) we have (xys)z: = x(yszt), that s,
the v; are a of (fulll) E® to (full!) E.

» Each left dilation v; defines Eq—semigroup @ := vi(e ©id;)v;.

Theorem (Arveson 1990, MS 2006 (B(H)), MS variants)

Every full product system admits a left dilation.
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Theorem

» MS 2002: Two Ep—semigroups 9,9 on B3(E) are
cocycle equivalent & they have isomorphic PS.

» MS 2009 (preprint): Two Eq—semigroups ¢, on B2(E) are
cocycle conjugate < they have Morita equivalent PS.

Theorem (MS 2009 (preprint))

» Eo—semigroups & on B4(E) and ¢’ on B2(E’) are
stably cocycle equivalent & they have isomorphic PS.

» Eg—semigroups & on B2(Eg) and 6 on B3(F¢) are
stably cocycle conjugate < they have Morita equivalent PS.

» C*—case: Last theorem under countability hypotheses.

» vN-case: Last theorem and everything else general.
(TP ~ vN-TP; total ~ strongly total; cont. ~» strongly cont.)
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Note: 3E%3(E) via (x*,y*):=xy* and bx*a:= (a*xb*)".
o E = spanX(E)sp,E = K(E)09,E = EOQE" 0y E
~——

shows E; = E*© 4,E =: E* &t E.

Theorem
¥ is spatial & E® is spatial.

Proof: “<". Put u;: x — xw;. (Check!) .
“=”. If uy fulfills 9¢(a)u; = wra, then uy € BEPI(HE, (E). Therefore,

de:oUt: B = Eg = E"60oE — E*"OE = E;

is a bilinear isometry in B&P!(Ey, E;) = BP(B, E;). So, ide: Ouy is
determined by the vector w; := (idg- ©ut)1 € E;. ~ «®. (Check!) O

Theorem (MS 2010)

An Ey—semigroup is spatial iff it is spatial as Markov semigroup.
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T Markov iff £&° . (Thatis, (¢1,&1) = T(1) =1.)
So, let E® be PS with unital unit £°.
» E; — &E; C Egyt isometric embedding. (Only right linear!)
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Moreover:
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> S0, b > (£, 91(EbEF)E) = (&1, bér) defines Markov semigroup.

(Note: Of course, E; can be recovered as 9:(££*)E with left action
bx; = 9¢(£bE™) Xt
Bhat 1996 (B(H)), MS 2002 for arbitrary )

We summarize:
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Weak dilations
Theorem (Bhat and MS 2000, MS 2002)

Let E® be a PS with a unital unit £2. Then the triple (E,9,&) is a
of the Markov semigroup T defined by T; := (&;, &;):

T
B B
iZf’f*l TE=<£'§>
B3(E) —— > B(E)

t
Moreover, if (E®, £°) is the GNS-construction of the Markov
semigroup T, then (E, 9, ¢) is the unique of T.
Remark

Works for product systems over arbitrary right-reversible monoids!
The crucial ingredient is the GNS-system.
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We can say, a it is a triple (E, 9, &) consisting of
» a Hilbert B—module E,
» an Ep—semigroup ¢ on B2(E),
» a unit vector ¢ € E,
such that ££* is increasing ~» T; := (&, 9¢(£bEF)€) is a Markov
semigroup of which ¥, therefore, is a weak dilation.

A weak dilation can be

> ( ) if 9 is,

> if 3:(£€7) 1 idE,

> , if ¢ is an automorphism semigroup,

> if ¢ is implemented as @ = u; e uj by a unitary group.
Note:

» The inductive limit dilation is primary and every primary weak
dilation arises that way.

» An inner weak dilation has trivial product system.

» The PS of a weak automorphism dilation is contained in the
Picard group of 8.
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Spatial dynamics and spatial product systems

Noise

Definition (MS 2006 (preprint 2001) and 2009 (preprint))

A weak dilation (E, 8, w) is a if:
1. E is a correspondence over 8.
2. 8 leaves 8 c B2(E) pointwise invariant.
3. wis (that is, bw = wb).

Observe:

» A noise is a weak dilation of the trivial semigroup on 8.

» A noise also is a unital dilation of the trivial semigroup on 8.
Our classification of Eg—semigroups by product systems tells:

Corollary

A strict (normal) Ey—semigroup on B3(E), E (strongly) full, is
spatial iff is is stably cocycle equivalent to a noise.
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Spatial product systems = noises

Recall: E® with unital £&° ~
» Ef =limind; E; over E; — &E; C Egyy.
» EsOE — Esit ~ v: EEOE — EL.
» Eisé 0 3 ES with &4 =&
>~ ﬁf = vi(e @idy)vy
is strict primary weak dilation of Tf = (&4, 0&1).
» Every strict primary weak dilation arises that way.
Now: (E®, w®) spatial product system ~»
» Strict primary weak dilation (E%, 8 = 9%, w) of idg
» Since w® central, left action of E; survives limind;
~ E“is correspondence ~» (E“,§ =9“,w) is noise!

» Every strict primary noise arises that way from its spatial
product system (E®, w®).
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Theorem (MS 2008 (B(H)), 2009 (preprints))

A (normal) Markov semigroup admits a dilation to a cocycle
perturbation of a primary noise iff it is spatial.

Proof.

“—="is obvious. For‘<=":

Spatial T ~ (E®, £°, w°)

~ (E¢, 9, &) weak dilation of T (inductive limit over £°)
~> noise (E“, 8, w) (inductive limit over w®)

\4

\4

v

v

Amplifications of them are cocycle equivalent. = cocycle!

v

Amplifications remain weak dilation and noise, respectively.
Identification can be done to identify new & with new w.

\{



Dilations of Markov semigroups to noises
Unclear» Cocycle adapted?
» Fulfills QSDE?
» Hudson-Parthasarathy 1984. Uniformly continuous Markov
semigroups on B(H).
B(T(L2(Ry,K)) ® H) = B3(T(LA(R.1, K) ® B(H))).
» Kimmerer-Speicher 1992. Uniformly continuous Markov
semigroups on B(H).
B(F(LA(Ry,K)) ® H) = B3(F(L(R,., K) ® B(H))).
» Goswami-Sinha 1999. Uniformly continuous Markov
semigroups on B c B(H).
Calculus for 3""(I’(L2(R+, K)® B(H))) leaves invariant
B3(M(L2(Ry. K) ® B)).
» MS 2000. Markov semigroups on 8 with CE-generator.
Calculus on B3(F(L2(R ., F)). (No embedding into H & B.)
» Kostler 2000. Abstract calculus. (Faithful invariant state!)
» Many more .... (Sorry!) Also Evans-Hudson flows ....

» Is it possible to write down the cocycle from MS 20007
» What about the filtration A; = C*{us: 0 < s < t}?



Nonspatial Markov semigroups
» Until recently, in the case B(H) only type Il Eg—semigroup or

simple derivations of them.

Then Floricel 2008, using my construction of an
Ep—semigroup for every Arveson system, discovered a
Markov semigroup. In MS 2010 (preprint) | showed it is a
proper Markov semigroup.

» Fagnola-Liebscher-MS (in preparation): Classical Markov
semigroups of Brownian motion and Ornstein-Uhlenbeck are
nonspatial. Even vN!!

Cipriani-Fagnola-Lindsay 2000: It admits a (completely!)
spatial quantum extension to B(H).

This raises questions about classification of PS.

» Embedding may change the type.

» Morita equivalence may not chance the type.

» Morita equivalence may change (in the vN-case) the strong
type: In fact, the one-dimensional PS of every Ey—semigroup
on B(H) has a strongly continuous unit, but a type Il Arveson
system has no unit.



Thank you!



	Product systems, units, and CP-semigroups
	Product systems, E0–semigroups, and noises
	Unital units and weak dilations of Markov semigroups

