Spatial Quantum Dynamics

Michael Skeide

Dipartimento E.G.S.I. Università degli Studi del Molise

Besancon, February 19, 2013

Irreversible dynamics, reversible dynamics, and dilations

► Irreversible dynamics: Markov semigroups $T = (T_t)_{t \in \mathbb{R}_+}$

$$T_t \colon \mathcal{B} \xrightarrow[]{\text{Unital}} \mathcal{B}$$

► Semireversible dynamics: E_0 -Semigroups $\vartheta = (\vartheta_t)_{t \in \mathbb{R}_+}$

$$\vartheta_t \colon \mathcal{A} \xrightarrow{\text{unital (faithful)}} \mathcal{A}$$

• (Reversible dynamics: Automorphism groups $\alpha = (\alpha_t)_{t \in \mathbb{R}^+}$

 $\mathcal{A}, \mathcal{B}, \ldots$ unital C^* -algebras. If von Neumann, then all maps normal.

Irreversible dynamics, reversible dynamics, and dilations

Dilation:

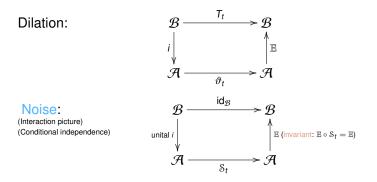
► Irreversible dynamics: Markov semigroups $T = (T_t)_{t \in \mathbb{R}_+}$

$$T_t \colon \mathcal{B} \xrightarrow[]{\text{unital}} \mathcal{B}$$

► Semireversible dynamics: E_0 -Semigroups $\vartheta = (\vartheta_t)_{t \in \mathbb{R}_+}$

$$\begin{array}{c} \vartheta_t \colon \mathcal{A} \xrightarrow[]{\text{ unital (faithful)}} & \mathcal{A} \\ & & & \\ \mathcal{B} \xrightarrow[]{\text{ endomorphisms}} & \mathcal{A} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \mathcal{A} \xrightarrow[]{\text{ or } \mathcal{B}_t} & \\ & &$$

Dilations, noises, and cocycle perturbations



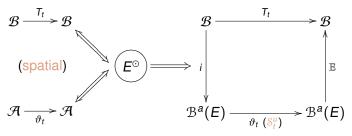
Unitary left cocycle: Unitaries $u_t \in \mathcal{A}$ such that $u_{s+t} = u_t \mathcal{S}_t(u_s)$

 \implies $S_t^u := u_t S_t(\bullet) u_t^*$ is E_0 -semigroup (cocycle perturbation)

A basic problem of quantum probability:

Given *T*, find *S* and u_t such that $\vartheta := S^u$ is a dilation.

Semigroups and product systems



► $T \implies E^{\odot}$: Via Paschke's GNS-construction for T_t ! (1973!)

- ▶ Special case: ϑ_t on $\mathcal{A} \rightsquigarrow t\mathcal{A} = \vartheta_t \mathcal{A}$. $(a.a' := \vartheta_t(a)a'.)$
- $\vartheta \iff E^{\odot}$ more interesting for $\mathcal{A} = \mathcal{B}^{a}(E)$. (Arveson for H.)
- Finally, also T on $\mathcal{B}^{a}(E)$ plays a role.

Also CP-semigroups and *E*-semigroups. Also multi-parameter case. (Or more general semigroups.) (\Rightarrow relations with multivariate operator theory.)

Spatial dynamics and spatial product systems

Definition (Powers 1987 ($\mathcal{B}(H)$), MS 2006 (preprint 2001))

An E_0 -semigroup ϑ is spatial if it admits a semigroup of intertwining isometries (u_t) : $\vartheta_t(a)u_t = u_t a$.

Definition (Arveson 1997 ($\mathcal{B}(H)$); Bhat-Liebscher-MS 2010)

A CP-semigroup T is spatial if admits a (sufficiently continuous!) semigroup (c_t) such that $T_t - c_t^* \bullet c_t$ is CP for all t.

(**Note:** Powers 2004 requires semigroup of intertwining isometries, which is more restrictive.)

Definition (MS 2006 (preprint 2001))

A spatial product system is a pair ($E^{\circ}, \omega^{\circ}$) consisting of a PS E° and central unital reference unit ω° . Unital: $\langle \omega_t, \omega_t \rangle = 1$. Central: $b\omega_t = \omega_t b$.

Outline

Product systems, units, and CP-semigroups

Product systems, E_0 -semigroups, and noises

Unital units and weak dilations of Markov semigroups

Product systems and units

Recall: $E = {}_{\mathcal{A}}E_{\mathcal{B}}$ and $F = {}_{\mathcal{B}}F_{C}$ correspondences \rightsquigarrow tensor product ${}_{\mathcal{A}}E \odot F_{C}$ generated by $x \odot y$ subject to

$$\langle x \odot y, x' \odot y' \rangle = \langle y, \langle x, x' \rangle y' \rangle, \quad a(x \odot y) = (ax) \odot y.$$

Definition

A product system is a family $E^{\odot} = (E_t)_{t \in \mathbb{R}_+}$ of correspondences over \mathcal{B} with $E_0 = \mathcal{B}$ and bilinear unitaries $u_{s,t} \colon E_s \odot E_t \to E_{s+t}$, such that:

- The "product" $x_s y_t := u_{s,t}(x_s \odot y_t)$ is associative.
- $u_{0,t}$ and $u_{t,0}$ reduce to the left and right action of $E_0 = \mathcal{B}$ on E_t .

Definition

A unit $\xi^{\odot} = (\xi_t)_{t \in \mathbb{R}_+}$ is a section such that $\xi_s \xi_t = \xi_{s+t}$ and $\xi_0 = \mathbf{1}$.

Units and CP-semigroups

Consequence:

$$\langle \xi_{s+t}, b\xi_{s+t} \rangle = \langle \xi_s \odot \xi_t, b\xi_s \odot \xi_t \rangle = \langle \xi_t, \langle \xi_s, b\xi_s \rangle \xi_t \rangle,$$

 \rightsquigarrow the maps $T_t := \langle \xi_t, \bullet \xi_t \rangle$ form an (obviously CP-)semigroup.

Definition

A pair (E°, ξ°) is the (unique) GNS-construction of a CP-semigroup T if $T_t = \langle \xi_t, \bullet \xi_t \rangle$ and if ξ° generates E° .

Theorem (Bhat-MS 2000)

Every (one-parameter) CP-semigroup (on a necessarily unital C^* -algebra) has a GNS-construction.

Note: *T* unital $\iff \xi^{\odot}$ unital $(\langle \xi_t, \xi_t \rangle = 1)$.

Spatial CP-semigroups

Suppose GNS-T embeds into spatial PS: $(E^{\odot}, \xi^{\odot}, \omega^{\odot})$. Then $c_t := \langle \omega_t, \xi_t \rangle$ form semigroup in \mathcal{B} and $T_t - c_t^* \bullet c_t$ is

$$\langle \xi_t, \bullet \xi_t \rangle - \langle \xi_t, \omega_t \rangle \bullet \langle \omega_t, \xi_t \rangle = \langle (\mathsf{id} - \omega_t \omega_t^*) \xi_t, \bullet (\mathsf{id} - \omega_t \omega_t^*) \xi_t \rangle,$$

and, clearly, CP, so T is spatial.

Note: Strongly continuous units in (strongly) continuous PS, then all semigroups

$$\begin{pmatrix} \mathfrak{T}_{t}^{0,0} & \mathfrak{T}_{t}^{0,1} \\ \mathfrak{T}_{t}^{1,0} & \mathfrak{T}_{t}^{1,1} \end{pmatrix} := \begin{pmatrix} \langle \omega_{t}, \bullet \omega_{t} \rangle & \langle \omega_{t}, \bullet \xi_{t} \rangle \\ \langle \xi_{t}, \bullet \omega_{t} \rangle & \langle \xi_{t}, \bullet \xi_{t} \rangle \end{pmatrix} = \begin{pmatrix} \mathsf{id}_{\mathscr{B}} & \bullet C_{t} \\ C_{t}^{*} \bullet & T_{t} \end{pmatrix}$$

are strongly continuous.

- C*-case: ct is norm continuous and T has CE-generator.
 (Defi. cont. PS by MS 2003 (preprint 2001).)
- vN-case: Much more interesting. (Much weaker topology!) (Defi. strongly cont. PS by MS 2009 (preprint).)

Spatial CP-semigroups

Theorem (Bhat-Liebscher-MS 2010)

*C***–case:* A strongly continuous CP-semigroup is spatial iff its GNS-system embeds into a continuous spatial product system.

Proof of "only if": Suppose strongly continuous T_t dominates $c_t^* \bullet c_t$ for continuous c_t . Then

$$\begin{pmatrix} \mathfrak{X}_t^{0,0} & \mathfrak{X}_t^{0,1} \\ \mathfrak{X}_t^{1,0} & \mathfrak{X}_t^{1,1} \end{pmatrix} := \begin{pmatrix} \mathsf{id}_{\mathscr{B}} & \bullet C_t \\ c_t^* \bullet & T_t \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & T_t - c_t^* \bullet c_t \end{pmatrix} + \begin{pmatrix} \mathsf{id}_{\mathscr{B}} & \bullet C_t \\ c_t^* \bullet & c_t^* \bullet c_t \end{pmatrix},$$

is a strongly continuous CP-semigroup on $M_2(\mathcal{B})$. Barreto-Bhat-Liebscher-MS 2004 and MS 2009 (preprint): There exists continuous $(E^{\odot}, \xi^{\odot}, \omega^{\odot})$.

Theorem (MS 2009 (preprint))

vN-case: A strongly continuous CP-semigroup is spatial iff its GNS-system is a strongly continuous spatial product system.

Spatial versus Fock

General:

- Spatial+uniformly continuous \Rightarrow GNS \subset Fock.
- (More precisely: A continuous set of units among which there is one ω^o generates Fock.)

C*-case:

- ▶ Spatial \Rightarrow uniformly continuous \Rightarrow GNS \subset Fock.
- Barreto-Bhat-Liebscher-MS 2004: Uniformly continuous (=:type I) ⇒ GNS ⊂ Fock.
- ▶ Bhat-Liebscher-MS 2010: GNS \subset Fock \Rightarrow GNS = Fock.

vN-case (Barreto-Bhat-Liebscher-MS 2004):

- Uniformly continuous ⇒ spatial. (Equivalent to Christensen-Evans 1979. Cf. Raja's talk.)
- Sub Fock = Fock.
- Uniformly continuous \Rightarrow spatial \Rightarrow GNS = Fock.
- MS 2009 (preprint): Spatial \Rightarrow GNS spatial.

E_0 –Semigroups and product systems

- ▶ \mathcal{B} a C^* -algebra. $E = E_{\mathcal{B}}$ a Hilbert \mathcal{B} -module.
- For convenience: E full, that is, $\overline{\text{span}}\langle E, E \rangle = \mathcal{B}$.

►
$$\vartheta = (\vartheta_t)_{t \ge 0}$$
 strict E_0 -semigroup on $\mathscr{B}^{\mathfrak{a}}(E)$.
Strict: span $\vartheta_t(EE^*)E = E$.

Theorem (Bhat 1996 (*B*(*H*)), MS 2002, 2009 (preprint 2004))

There is a unique full product system E^{\odot} and a family of unitaries $v_t : E \odot E_t \to E$ such that $\vartheta_t(a) = v_t(a \odot id_t)v_t^*$.

- ▶ With $xy_t := v_t(x \odot y_t)$ we have $(xy_s)z_t = x(y_sz_t)$, that is, the v_t are a left dilation of (full!) E^{\odot} to (full!) E.
- ► Each left dilation v_t defines E_0 -semigroup $\vartheta_t := v_t (\bullet \odot id_t) v_t^*$.

Theorem (Arveson 1990, MS 2006 ($\mathcal{B}(H)$), MS variants)

Every full product system admits a left dilation.

Theorem

- ► MS 2002: Two E₀-semigroups ϑ, ϑ' on B^a(E) are cocycle equivalent ⇔ they have isomorphic PS.
- MS 2009 (preprint): Two E₀−semigroups ϑ, ϑ' on B^a(E) are cocycle conjugate ⇔ they have Morita equivalent PS.

Theorem (MS 2009 (preprint))

- E₀-semigroups ϑ on B^a(E) and ϑ' on B^a(E') are stably cocycle equivalent ⇔ they have isomorphic PS.
- E₀−semigroups ϑ on B^a(E_B) and θ on B^a(F_C) are stably cocycle conjugate ⇔ they have Morita equivalent PS.
- ► *C**–case: Last theorem under countability hypotheses.
- vN-case: Last theorem and everything else general. (TP → vN-TP; total → strongly total; cont. → strongly cont.)

Spatial E_0 -semigroups

Note:
$${}_{\mathcal{B}}E^*_{\mathbb{B}^a(E)}$$
 via $\langle x^*, y^* \rangle := xy^*$ and $bx^*a := (a^*xb^*)^*$.

$${}_{\vartheta_t}E = \overline{\operatorname{span}} \, \mathcal{K}(E)_{\vartheta_t}E = \mathcal{K}(E) \odot_{\vartheta_t}E = E \odot \underbrace{E^* \odot_{\vartheta_t}E}_{\text{shows } E_t = E^* \odot_{\vartheta_t}E =: E^* \odot_t E.$$

Theorem

$$\vartheta$$
 is spatial $\Leftrightarrow E^{\odot}$ is spatial.

Proof: "
$$\Leftarrow$$
". Put $u_t : x \mapsto x\omega_t$. (Check!)
" \Rightarrow ". If u_t fulfills $\vartheta_t(a)u_t = u_t a$, then $u_t \in \mathbb{B}^{a,bil}(_0E, _tE)$. Therefore,

$$\mathrm{id}_{E^*} \odot u_t \colon \mathcal{B} = E_0 = E^* \odot_0 E \longrightarrow E^* \odot_t E = E_t$$

is a bilinear isometry in $\mathcal{B}^{a,bil}(E_0, E_t) = \mathcal{B}^{a,bil}(\mathcal{B}, E_t)$. So, $id_{E^*} \odot u_t$ is determined by the vector $\omega_t := (id_{E^*} \odot u_t) \mathbf{1} \in E_t$. $\rightsquigarrow \omega^{\odot}$. (Check!)

Theorem (MS 2010)

An E_0 -semigroup is spatial iff it is spatial as Markov semigroup.

Product systems + unital units \implies weak dilations

T Markov iff ξ° unital. (That is, $\langle \xi_t, \xi_t \rangle = T_t(\mathbf{1}) = \mathbf{1}$.) So, let E° be PS with unital unit ξ° .

- $E_t \rightarrow \xi_s E_t \subset E_{s+t}$ isometric embedding. (Only right linear!)
- In fact, it is an inductive system. $\rightarrow E = \liminf_{t \in I} \operatorname{Ind}_t E_t$.
- $u_{s,t}: E_s \odot E_t \to E_{s+t}$ "survives" to left dilation $v_t: E \odot E_t \to E$.
- ▶ So, $\vartheta_t(a) := v_t(a \odot id_t)v_t^*$ defines E_0 -semigroup on $\mathscr{B}^a(E)$.

Moreover:

- The unit vector $\xi = \xi_t \in E_t \subset E$ fulfills $\xi \xi_t = \xi$.
- ► So, $b \mapsto \langle \xi, \vartheta_t(\xi b \xi^*) \xi \rangle = \langle \xi_t, b \xi_t \rangle$ defines Markov semigroup.

(**Note:** Of course, E_t can be recovered as $\vartheta_t(\xi\xi^*)E$ with left action $bx_t = \vartheta_t(\xi b\xi^*)x_t$. Bhat 1996 ($\mathfrak{B}(H)$), MS 2002 for arbitrary ϑ .)

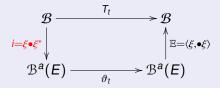
We summarize:

Product systems + unital units \implies weak dilations

Weak dilations

Theorem (Bhat and MS 2000, MS 2002)

Let E° be a PS with a unital unit ξ° . Then the triple (E, ϑ, ξ) is a weak dilation of the Markov semigroup T defined by $T_t := \langle \xi_t, \bullet \xi_t \rangle$:



Moreover, if (E°, ξ°) is the GNS-construction of the Markov semigroup T, then (E, ϑ, ξ) is the unique minimal dilation of T.

Remark

Works for product systems over arbitrary right-reversible monoids! The crucial ingredient is the GNS-system. We can say, a weak dilation it is a triple (E, ϑ, ξ) consisting of

- a Hilbert \mathcal{B} -module E,
- an E_0 -semigroup ϑ on $\mathcal{B}^a(E)$,
- a unit vector $\xi \in E$,

such that $\xi\xi^*$ is increasing $\rightarrow T_t := \langle \xi, \vartheta_t(\xi b\xi^*)\xi \rangle$ is a Markov semigroup of which ϑ , therefore, is a weak dilation.

A weak dilation can be

- strict (strongly continuous) if ϑ is,
- primary if $\vartheta_t(\xi\xi^*) \uparrow \operatorname{id}_E$,
- automorphic, if ϑ is an automorphism semigroup,
- inner if ϑ is implemented as $\vartheta_t = u_t \bullet u_t^*$ by a unitary group.

Note:

- The inductive limit dilation is primary and every primary weak dilation arises that way.
- An inner weak dilation has trivial product system.
- The PS of a weak automorphism dilation is contained in the Picard group of \mathcal{B} .

Spatial dynamics and spatial product systems Noise

Definition (MS 2006 (preprint 2001) and 2009 (preprint))

A weak dilation (E, S, ω) is a noise if:

- 1. E is a correspondence over \mathcal{B} .
- 2. S leaves $\mathcal{B} \subset \mathcal{B}^{a}(E)$ pointwise invariant.
- **3**. ω is central (that is, $b\omega = \omega b$).

Observe:

- A noise is a weak dilation of the trivial semigroup on \mathcal{B} .
- A noise also is a unital dilation of the trivial semigroup on \mathcal{B} .

Our classification of E_0 -semigroups by product systems tells:

Corollary

A strict (normal) E_0 -semigroup on $\mathbb{B}^a(E)$, E (strongly) full, is spatial iff is is stably cocycle equivalent to a noise.

Spatial dynamics and spatial product systems

Spatial product systems \implies noises

Recall: E^{\odot} with unital $\xi^{\odot} \rightarrow$

- $E^{\xi} = \liminf_{t} E_t$ over $E_t \to \xi_s E_t \subset E_{s+t}$.
- $\blacktriangleright \ E_s \odot E_t \to E_{s+t} \ \rightsquigarrow \ v_t \colon E^{\xi} \odot E_t \to E^{\xi}.$
- $E_t \ni \xi_t \mapsto \xi \ni E^{\xi}$ with $\xi \xi_t = \xi$.
- $\blacktriangleright \rightsquigarrow \vartheta_t^{\xi} := v_t (\bullet \odot \operatorname{id}_t) v_t^*$

is strict primary weak dilation of $T_t^{\xi} := \langle \xi_t, \bullet \xi_t \rangle$.

Every strict primary weak dilation arises that way.

Now: $(E^{\odot}, \omega^{\odot})$ spatial product system \rightsquigarrow

- Strict primary weak dilation (E^ω, S = ϑ^ω, ω) of id_B
- Since ω[⊙] central, left action of E_t survives lim ind_t
 → E^ω is correspondence → (E^ω, S = θ^ω, ω) is noise!
- Every strict primary noise arises that way from its spatial product system (E^o, ω^o).

Dilations of Markov semigroups to noises

Theorem (MS 2008 (*B*(*H*)), 2009 (preprints))

A (normal) Markov semigroup admits a dilation to a cocycle perturbation of a primary noise iff it is spatial.

Proof.

- " \implies " is obvious. For" \Leftarrow ":
 - Spatial $T \rightsquigarrow (E^{\odot}, \xi^{\odot}, \omega^{\odot})$
 - \rightarrow (E^{ξ}, ϑ, ξ) weak dilation of T (inductive limit over ξ^{\odot})
 - \rightsquigarrow noise (E^{ω} , S, ω) (inductive limit over ω^{\odot})
 - ► Amplifications of them are cocycle equivalent. ⇒ cocycle!
 - Amplifications remain weak dilation and noise, respectively.

• Identification can be done to identify new ξ with new ω .

Dilations of Markov semigroups to noises

Unclear > Cocycle adapted?

- Fulfills QSDE?
 - Hudson-Parthasarathy 1984. Uniformly continuous Markov semigroups on $\mathcal{B}(H)$.

 $\mathcal{B}(\Gamma(L^{2}(\mathbb{R}_{+}, K)) \otimes H) = \mathcal{B}^{a}(\Gamma(L^{2}(\mathbb{R}_{+}, K) \otimes \mathcal{B}(H))).$

- Kümmerer-Speicher 1992. Uniformly continuous Markov semigroups on B(H).
 B(𝔅(L²(ℝ₊, K)) ⊗ H) = B^a(𝔅(L²(ℝ₊, K) ⊗ B(H))).
- Goswami-Sinha 1999. Uniformly continuous Markov semigroups on B ⊂ B(H).
 Calculus for B^a(Γ(L²(ℝ₊, K) ⊗ B(H))) leaves invariant B^a(Γ(L²(ℝ₊, K) ⊗ B)).
- MS 2000. Markov semigroups on B with CE-generator. Calculus on B^a(𝔅(L²(ℝ₊, F)). (No embedding into 𝔅 𝔅).)
- Köstler 2000. Abstract calculus. (Faithful invariant state!)
- Many more (Sorry!) Also Evans-Hudson flows
- Is it possible to write down the cocycle from MS 2000?
- What about the filtration $\mathcal{R}_t = C^* \{ u_s : 0 \le s \le t \}$?

Nonspatial Markov semigroups

• Until recently, in the case $\mathcal{B}(H)$ only type III E_0 -semigroup or simple derivations of them.

Then Floricel 2008, using my construction of an

 E_0 -semigroup for every Arveson system, discovered a Markov semigroup. In MS 2010 (preprint) I showed it is a proper Markov semigroup.

 Fagnola-Liebscher-MS (in preparation): Classical Markov semigroups of Brownian motion and Ornstein-Uhlenbeck are nonspatial. Even vN!!
 Cipriani-Fagnola-Lindsay 2000: It admits a (completely!) spatial quantum extension to B(H).

This raises questions about classification of PS.

- Embedding may change the type.
- Morita equivalence may not chance the type.
- Morita equivalence may change (in the vN-case) the strong type: In fact, the one-dimensional PS of every E₀-semigroup on B(H) has a strongly continuous unit, but a type III Arveson system has no unit.

Thank you!