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Markov semigroups, E0–semigroups, product systems
Irreversible dynamics, reversible dynamics, and dilations

I Irreversible dynamics: Markov semigroups T = (Tt )t∈R+

Tt : B
unital
−−−−→

CP
B

I Semireversible dynamics: E0–Semigroups ϑ = (ϑt )t∈R+

ϑt : A
unital (faithful)
−−−−−−−−−−−−→
endomorphisms

A

I Reversible dynamics: Automorphism groups α = (αt )t∈R+
I (Reversible dynamics: Automorphism groups α = (αt )t∈R)

A,B, . . . unital C∗–algebras. If von Neumann, then all maps normal.



Markov semigroups, E0–semigroups, product systems
Irreversible dynamics, reversible dynamics, and dilations

I Irreversible dynamics: Markov semigroups T = (Tt )t∈R+

Tt : B
unital
−−−−→

CP
B

I Semireversible dynamics: E0–Semigroups ϑ = (ϑt )t∈R+

ϑt : A
unital (faithful)
−−−−−−−−−−−−→
endomorphisms

A

I Dilation: B
Tt //

embedding i

��

B

A
ϑt

// A

E (expectation: i ◦ E is cond. exp.)

OO



Markov semigroups, E0–semigroups, product systems
Dilations, noises, and cocycle perturbations

Dilation: B
Tt //

i
��

B

A
ϑt

// A

E

OO

Noise: B
idB //

unital i

��

B

A
St

// A

E (invariant: E ◦ St = E)

OO
(Interaction picture)
(Conditional independence)

Unitary left cocycle: Unitaries ut ∈ A such that us+t = utSt (us)

=⇒ Su
t := utSt (•)u∗t is E0–semigroup (cocycle perturbation)

A basic problem of quantum probability:

Given T , find S and ut such that ϑ := Su is a dilation.



Markov semigroups, E0–semigroups, product systems
Semigroups and product systems

B
Tt //

(spatial)

B [c

�#
@@

@@
@@

@@
@@

@@

A
ϑt

// A
{�

;C~~~~~~

~~~~~~

E�ONMLHIJK
B

Tt //

i

��

B

+3

Ba(E)
ϑt (Su

t )
// Ba(E)

E

OO

I T =⇒ E�: Via Paschke’s GNS-construction for Tt ! (1973!)
I Special case: ϑt on A { tA = ϑtA. (a.a′ := ϑt (a)a′.)
I ϑ⇐⇒ E� more interesting for A = Ba(E). (Arveson for H.)
I Finally, also T on Ba(E) plays a role.

Also CP-semigroups and E–semigroups.
Also multi-parameter case. (Or more general semigroups.)
(⇒ relations with multivariate operator theory.)



Markov semigroups, E0–semigroups, product systems
Spatial dynamics and spatial product systems

Definition (Powers 1987 (B(H)), MS 2006 (preprint 2001))

An E0–semigroup ϑ is spatial if it admits a semigroup of
intertwining isometries (ut ): ϑt (a)ut = uta.

Definition (Arveson 1997 (B(H)); Bhat-Liebscher-MS 2010)

A CP-semigroup T is spatial if admits a (sufficiently continuous!)
semigroup (ct ) such that Tt − c∗t • ct is CP for all t .

(Note: Powers 2004 requires semigroup of intertwining isometries,
which is more restrictive.)

Definition (MS 2006 (preprint 2001))

A spatial product system is a pair (E�, ω�) consisting of a PS E�

and central unital reference unit ω�.
Unital: 〈ωt , ωt〉 = 1. Central: bωt = ωtb.



Outline

Product systems, units, and CP-semigroups

Product systems, E0–semigroups, and noises

Unital units and weak dilations of Markov semigroups



Product systems and units

Recall: E = AEB and F = BFC correspondences
{ tensor product AE � FC generated by x � y subject to

〈x � y, x′ � y′〉 = 〈y, 〈x, x′〉y′〉, a(x � y) = (ax) � y.

Definition

A product system is a family E� = (Et )t∈R+ of correspondences
over B with E0 = B and bilinear unitaries us,t : Es � Et → Es+t ,
such that:
I The “product” xsyt := us,t (xs � yt ) is associative.
I u0,t and ut ,0 reduce to the left and right action of E0 = B on Et .

Definition

A unit ξ� = (ξt )t∈R+ is a section such that ξsξt = ξs+t and ξ0 = 1.



Units and CP-semigroups

Consequence:

〈ξs+t , bξs+t〉 = 〈ξs � ξt , bξs � ξt〉 = 〈ξt , 〈ξs , bξs〉ξt〉,

{ the maps Tt := 〈ξt , •ξt〉 form an (obviously CP-)semigroup.

Definition

A pair (E�, ξ�) is the (unique) GNS-construction of a
CP-semigroup T if Tt = 〈ξt , •ξt〉 and if ξ� generates E�.

Theorem (Bhat-MS 2000)

Every (one-parameter) CP-semigroup (on a necessarily unital
C∗–algebra) has a GNS-construction.

Note: T unital ⇐⇒ ξ� unital (〈ξt , ξt〉 = 1).



Spatial CP-semigroups

Suppose GNS-T embeds into spatial PS: (E�, ξ�, ω�).
Then ct := 〈ωt , ξt〉 form semigroup in B and Tt − c∗t • ct is

〈ξt , •ξt〉 − 〈ξt , ωt〉 • 〈ωt , ξt〉 = 〈(id−ωtω
∗
t )ξt , •(id−ωtω

∗
t )ξt〉,

and, clearly, CP, so T is spatial.
Note: Strongly continuous units in (strongly) continuous PS, then
all semigroups(

T
0,0
t T

0,1
t

T
1,0
t T

1,1
t

)
:=

(
〈ωt , •ωt〉 〈ωt , •ξt〉

〈ξt , •ωt〉 〈ξt , •ξt〉

)
=

(
idB •ct

c∗t • Tt

)
are strongly continuous.
I C∗–case: ct is norm continuous and T has CE-generator.

(Defi. cont. PS by MS 2003 (preprint 2001).)
I vN-case: Much more interesting. (Much weaker topology!)

(Defi. strongly cont. PS by MS 2009 (preprint).)



Spatial CP-semigroups
Theorem (Bhat-Liebscher-MS 2010)

C∗–case: A strongly continuous CP-semigroup is spatial iff its
GNS-system embeds into a continuous spatial product system.

Proof of “only if”: Suppose strongly continuous Tt dominates
c∗t • ct for continuous ct . Then(
T

0,0
t T

0,1
t

T
1,0
t T

1,1
t

)
:=

(
idB •ct

c∗t • Tt

)
=

(
0 0
0 Tt − c∗t • ct

)
+

(
idB •ct

c∗t • c∗t • ct

)
,

is a strongly continuous CP-semigroup on M2(B).
Barreto-Bhat-Liebscher-MS 2004 and MS 2009 (preprint):
There exists continuous (E�, ξ�, ω�). �

Theorem (MS 2009 (preprint))

vN-case: A strongly continuous CP-semigroup is spatial iff its
GNS-system is a strongly continuous spatial product system.



Spatial versus Fock

General:
I Spatial+uniformly continuous⇒ GNS ⊂ Fock.
I (More precisely: A continuous set of units among which there

is one ω� generates Fock.)

C∗–case:
I Spatial ⇒ uniformly continuous ⇒ GNS ⊂ Fock.
I Barreto-Bhat-Liebscher-MS 2004: Uniformly continuous

(=:type I) ; GNS ⊂ Fock.
I Bhat-Liebscher-MS 2010: GNS ⊂ Fock ; GNS = Fock.

vN-case (Barreto-Bhat-Liebscher-MS 2004):
I Uniformly continuous ⇒ spatial.

(Equivalent to Christensen-Evans 1979. Cf. Raja’s talk.)
I Sub Fock = Fock.
I Uniformly continuous ⇒ spatial ⇒ GNS = Fock.
I MS 2009 (preprint): Spatial ⇒ GNS spatial.



E0–Semigroups and product systems
I B a C∗–algebra. E = EB a Hilbert B–module.
I For convenience: E full, that is, span〈E,E〉 = B.
I ϑ = (ϑt )t≥0 strict E0–semigroup on Ba(E).

Strict: spanϑt (EE∗)E = E.

Theorem (Bhat 1996 (B(H)), MS 2002, 2009 (preprint 2004))

There is a unique full product system E� and a family of unitaries
vt : E � Et → E such that ϑt (a) = vt (a � idt )v∗t .

I With xyt := vt (x � yt ) we have (xys)zt = x(yszt ), that is,
the vt are a left dilation of (full!) E� to (full!) E.

I Each left dilation vt defines E0–semigroup ϑt := vt (• � idt )v∗t .

Theorem (Arveson 1990, MS 2006 (B(H)), MS variants)

Every full product system admits a left dilation.



Theorem

I MS 2002: Two E0–semigroups ϑ, ϑ′ on Ba(E) are
cocycle equivalent⇔ they have isomorphic PS.

I MS 2009 (preprint): Two E0–semigroups ϑ, ϑ′ on Ba(E) are
cocycle conjugate⇔ they have Morita equivalent PS.

Theorem (MS 2009 (preprint))

I E0–semigroups ϑ on Ba(E) and ϑ′ on Ba(E′) are
stably cocycle equivalent⇔ they have isomorphic PS.

I E0–semigroups ϑ on Ba(EB) and θ on Ba(FC) are
stably cocycle conjugate⇔ they have Morita equivalent PS.

I C∗–case: Last theorem under countability hypotheses.
I vN-case: Last theorem and everything else general.

(TP{ vN-TP; total{ strongly total; cont.{ strongly cont.)



Spatial E0–semigroups
Note: BE∗

Ba(E)
via 〈x∗, y∗〉 := xy∗ and bx∗a := (a∗xb∗)∗.

ϑt E = spanK(E)ϑt E = K(E) � ϑt E = E � E∗ � ϑt E︸    ︷︷    ︸
shows Et = E∗ � ϑt E =: E∗ �t E.

Theorem

ϑ is spatial⇔ E� is spatial.

Proof: “⇐”. Put ut : x 7→ xωt . (Check!)
“⇒”. If ut fulfills ϑt (a)ut = uta, then ut ∈ B

a,bil(0E, tE). Therefore,

idE∗ �ut : B = E0 = E∗ �0 E −→ E∗ �t E = Et

is a bilinear isometry in Ba,bil(E0,Et ) = Ba,bil(B,Et ). So, idE∗ �ut is
determined by the vector ωt := (idE∗ �ut )1 ∈ Et . { ω�. (Check!)�

Theorem (MS 2010)

An E0–semigroup is spatial iff it is spatial as Markov semigroup.



Product systems + unital units =⇒ weak dilations

T Markov iff ξ� unital. (That is, 〈ξt , ξt〉 = Tt (1) = 1.)
So, let E� be PS with unital unit ξ�.

I Et → ξsEt ⊂ Es+t isometric embedding. (Only right linear!)
I In fact, it is an inductive system. { E = lim indt Et .
I us,t : Es � Et → Es+t “survives” to left dilation vt : E � Et → E.
I So, ϑt (a) := vt (a � idt )v∗t defines E0–semigroup on Ba(E).

Moreover:
I The unit vector ξ = ξt ∈ Et ⊂ E fulfills ξξt = ξ.
I So, b 7→ 〈ξ, ϑt (ξbξ∗)ξ〉 = 〈ξt , bξt〉 defines Markov semigroup.

(Note: Of course, Et can be recovered as ϑt (ξξ
∗)E with left action

bxt = ϑt (ξbξ∗)xt .
Bhat 1996 (B(H)), MS 2002 for arbitrary ϑ.)

We summarize:



Product systems + unital units =⇒ weak dilations
Weak dilations

Theorem (Bhat and MS 2000, MS 2002)

Let E� be a PS with a unital unit ξ�. Then the triple (E, ϑ, ξ) is a
weak dilation of the Markov semigroup T defined by Tt := 〈ξt , •ξt〉:

B
Tt //

i=ξ•ξ∗

��

B

Ba(E)
ϑt

// Ba(E)

E=〈ξ,•ξ〉

OO

Moreover, if (E�, ξ�) is the GNS-construction of the Markov
semigroup T, then (E, ϑ, ξ) is the unique minimal dilation of T.

Remark

Works for product systems over arbitrary right-reversible monoids!
The crucial ingredient is the GNS-system.



We can say, a weak dilation it is a triple (E, ϑ, ξ) consisting of
I a Hilbert B–module E,
I an E0–semigroup ϑ on Ba(E),
I a unit vector ξ ∈ E,

such that ξξ∗ is increasing{ Tt := 〈ξ, ϑt (ξbξ∗)ξ〉 is a Markov
semigroup of which ϑ, therefore, is a weak dilation.

A weak dilation can be
I strict (strongly continuous) if ϑ is,
I primary if ϑt (ξξ

∗) ↑ idE ,
I automorphic, if ϑ is an automorphism semigroup,
I inner if ϑ is implemented as ϑt = ut • u∗t by a unitary group.

Note:
I The inductive limit dilation is primary and every primary weak

dilation arises that way.
I An inner weak dilation has trivial product system.
I The PS of a weak automorphism dilation is contained in the

Picard group of B.



Spatial dynamics and spatial product systems
Noise

Definition (MS 2006 (preprint 2001) and 2009 (preprint))

A weak dilation (E, S, ω) is a noise if:

1. E is a correspondence over B.

2. S leaves B ⊂ Ba(E) pointwise invariant.

3. ω is central (that is, bω = ωb).

Observe:
I A noise is a weak dilation of the trivial semigroup on B.
I A noise also is a unital dilation of the trivial semigroup on B.

Our classification of E0–semigroups by product systems tells:

Corollary

A strict (normal) E0–semigroup on Ba(E), E (strongly) full, is
spatial iff is is stably cocycle equivalent to a noise.



Spatial dynamics and spatial product systems
Spatial product systems =⇒ noises

Recall: E� with unital ξ� {
I Eξ = lim indt Et over Et → ξsEt ⊂ Es+t .
I Es � Et → Es+t { vt : Eξ � Et → Eξ.
I Et 3 ξt 7→ ξ 3 Eξ with ξξt = ξ.
I { ϑ

ξ
t := vt (• � idt )v∗t

is strict primary weak dilation of T ξ
t := 〈ξt , •ξt〉.

I Every strict primary weak dilation arises that way.

Now: (E�, ω�) spatial product system{
I Strict primary weak dilation (Eω, S = ϑω, ω) of idB
I Since ω� central, left action of Et survives lim indt

{ Eω is correspondence { (Eω, S = ϑω, ω) is noise!
I Every strict primary noise arises that way from its spatial

product system (E�, ω�).



Dilations of Markov semigroups to noises

Theorem (MS 2008 (B(H)), 2009 (preprints))

A (normal) Markov semigroup admits a dilation to a cocycle
perturbation of a primary noise iff it is spatial.

Proof.

“=⇒” is obvious. For“⇐=”:
I Spatial T { (E�, ξ�, ω�)

I { (Eξ, ϑ, ξ) weak dilation of T (inductive limit over ξ�)
I { noise (Eω, S, ω) (inductive limit over ω�)
I Amplifications of them are cocycle equivalent. =⇒ cocycle!
I Amplifications remain weak dilation and noise, respectively.
I Identification can be done to identify new ξ with new ω. �



Dilations of Markov semigroups to noises
Unclear I Cocycle adapted?

I Fulfills QSDE?
I Hudson-Parthasarathy 1984. Uniformly continuous Markov

semigroups on B(H).
B
(
Γ(L2(R+,K)) ⊗ H

)
= Ba

(
Γ(L2(R+,K) ⊗B(H))

)
.

I Kümmerer-Speicher 1992. Uniformly continuous Markov
semigroups on B(H).
B
(
F(L2(R+,K)) ⊗ H

)
= Ba

(
F(L2(R+,K) ⊗B(H))

)
.

I Goswami-Sinha 1999. Uniformly continuous Markov
semigroups on B ⊂ B(H).
Calculus for Ba

(
Γ(L2(R+,K) ⊗B(H))

)
leaves invariant

Ba
(
Γ(L2(R+,K) ⊗ B)

)
.

I MS 2000. Markov semigroups on B with CE-generator.
Calculus on Ba

(
F(L2(R+,F)

)
. (No embedding into H ⊗ B.)

I Köstler 2000. Abstract calculus. (Faithful invariant state!)
I Many more .... (Sorry!) Also Evans-Hudson flows ....

I Is it possible to write down the cocycle from MS 2000?
I What about the filtration At = C∗{us : 0 ≤ s ≤ t}?



Nonspatial Markov semigroups
I Until recently, in the case B(H) only type III E0–semigroup or

simple derivations of them.
Then Floricel 2008, using my construction of an
E0–semigroup for every Arveson system, discovered a
Markov semigroup. In MS 2010 (preprint) I showed it is a
proper Markov semigroup.

I Fagnola-Liebscher-MS (in preparation): Classical Markov
semigroups of Brownian motion and Ornstein-Uhlenbeck are
nonspatial. Even vN!!
Cipriani-Fagnola-Lindsay 2000: It admits a (completely!)
spatial quantum extension to B(H).

This raises questions about classification of PS.
I Embedding may change the type.
I Morita equivalence may not chance the type.
I Morita equivalence may change (in the vN-case) the strong

type: In fact, the one-dimensional PS of every E0–semigroup
on B(H) has a strongly continuous unit, but a type III Arveson
system has no unit.



Thank you!
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