Recent advances in differentiability in metric measure spaces

Estibalitz Durand Cartagena

UNED (Espagne) Dpto. de Matemática Aplicada

Séminaire d'Analyse Fonctionnelle Laboratoire de Mathématiques de Besançon

Zero order calculus

 (X,d,μ) metric measure space, μ Borel regular measure

Coifmann-Weiss 70' Spaces of homogeneous type.

Zero order calculus

 (X, d, μ) metric measure space, μ Borel regular measure Coifmann-Weiss 70' Spaces of homogeneous type. Definition

 μ is doubling if $\exists C > 0$ constant such that

$$0 < \mu(B(x,2r)) \le C \,\mu(B(x,r)) < \infty \quad \forall x \in X, r > 0.$$

X complete + μ doubling \Longrightarrow *X* proper

- Lebesgue points
- Vitali Coverings
- Maximal operator...

Examples

•
$$(\mathbb{R}^n, |\cdot|, \mathscr{L}^n) C = 2^n$$

• $(C, |\cdot|, \mathscr{H}^{\frac{\log 2}{\log 3}})$

A curve in *X* is a continuous mapping $\gamma : [a, b] \to X$. A rectifiable curve is a curve with finite length.

First order analysis

Rademacher Theorem Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a Lipschitz function. Then f is differentiable \mathscr{L}^n -a.e. $x \in \mathbb{R}^n$.

First order analysis

Rademacher Theorem Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a Lipschitz function. Then f is differentiable \mathscr{L}^n -a.e. $x \in \mathbb{R}^n$.

•
$$\mu \ll \mathscr{L}^n$$
 OK

•
$$\mu = \delta_{x_0} \rightsquigarrow (\mathbb{R}, |\cdot|, \mu)$$

• $\mu = \text{length of a (lipschitz) curve} \rightsquigarrow (\mathbb{R}^2, |\cdot|, \mu)$

First order analysis

Rademacher Theorem Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a Lipschitz function. Then f is differentiable \mathscr{L}^n -a.e. $x \in \mathbb{R}^n$.

•
$$\mu << \mathscr{L}^n$$
 OK
• $\mu = \delta_{x_0} \rightsquigarrow (\mathbb{R}, |\cdot|, \mu)$

• $\mu = \text{length of a (lipschitz) curve} \rightsquigarrow (\mathbb{R}^2, |\cdot|, \mu)$

Stepanov Theorem $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable \mathscr{L}^n -a.e. in S(f),

$$S(f) := \Big\{ x \in \mathbb{R}^n : \operatorname{Lip} f(x) := \limsup_{\substack{y \to x \\ y \neq x}} \frac{|f(x) - f(y)|}{|x - y|} < \infty \Big\}.$$

First order analysis on metric spaces

Lipschitz function spaces

(X, d) metric space

Definition

A function $f : X \longrightarrow \mathbb{R}$ is Lipschitz if there is a constant C > 0 such that

 $|f(x) - f(y)| \le C d(x, y) \quad \forall x, y \in X.$

Lipschitz function spaces

(X, d) metric space

Definition

A function $f : X \longrightarrow \mathbb{R}$ is Lipschitz if there is a constant C > 0 such that

$$|f(x) - f(y)| \le C d(x, y) \quad \forall x, y \in X.$$

★ LIP(X) = {
$$f : X \longrightarrow \mathbb{R} : f$$
 is Lipschitz}
★ LIP[∞](X) = { $f : X \longrightarrow \mathbb{R} : f$ is Lipschitz and bounded}

$$\|f\|_{\mathrm{LIP}^{\infty}} = \|f\|_{\infty} + \mathrm{LIP}(f)$$

Pointwise Lipschitz function spaces

Definition

Given a function $f : X \to \mathbb{R}$ the pointwise Lipschitz constant of f at $x \in X$ is defined as

$$\operatorname{Lip} f(x) = \limsup_{\substack{y \to x \\ y \neq x}} \frac{|f(x) - f(y)|}{d(x, y)}.$$

Pointwise Lipschitz function spaces

Definition Given a function $f : X \to \mathbb{R}$ the pointwise Lipschitz constant of f at $x \in X$ is defined as

$$\operatorname{Lip} f(x) = \limsup_{\substack{y \to x \\ y \neq x}} \frac{|f(x) - f(y)|}{d(x, y)}.$$

Example If $f \in C^1(\Omega)$, $\Omega \stackrel{\text{op}}{\subset} \mathbb{R}^n$ (or of a Riemannian manifold), then $\operatorname{Lip} f(x) = |\nabla f(x)| \quad \forall x \in \Omega.$

Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

infinitesimal data ~> local control

Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

infinitesimal data \rightsquigarrow local control

This principle can apply in very general situation in the form of a Poincaré inequality:

Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

This principle can apply in very general situation in the form of a Poincaré inequality:

$$\exists C = C(n) > 0: \forall B \equiv B(x, r) \subset \mathbb{R}^n \ \forall f \in W^{1, p}(\mathbb{R}^n) (1 \le p < \infty)$$
$$\int_B |f - f_B| d\mathscr{L}^n \le C(n) r \Big(\int_B |\nabla f|^p d\mathscr{L}^n \Big)^{1/p}$$

Notation:

$$\int_{B} f \, d\mathcal{L}^{n} = f_{B} = \frac{1}{\mathcal{L}^{n}(B)} \int_{B} f \, d\mathcal{L}^{n}$$

Applications: Harmonic Analysis and PDEs

$$\int_{B} |f - f_{B}| d\mathscr{L}^{n} \leq C(n) r \Big(\int_{B} \underbrace{|\nabla f|^{p}}_{?} d\mathscr{L}^{n} \Big)^{1/p}$$

$$\int_{B} |f - f_{B}| d\mathscr{L}^{n} \leq C(n) r \Big(\int_{B} \underbrace{|\nabla f|^{p}}_{?} d\mathscr{L}^{n} \Big)^{1/p}$$

$$\int_{B} |f - f_{B}| d\mathcal{L}^{n} \leq \int_{B} \int_{B} |f(x) - f(y)| d\mathcal{L}^{n}(y) d\mathcal{L}^{n}(x)$$

$$\int_{B} |f - f_{B}| d\mathscr{L}^{n} \leq C(n) r \Big(\int_{B} \underbrace{|\nabla f|^{p}}_{?} d\mathscr{L}^{n} \Big)^{1/p}$$

$$\int_{B} |f - f_{B}| d\mathcal{L}^{n} \leq \int_{B} \int_{B} |f(x) - f(y)| d\mathcal{L}^{n}(y) d\mathcal{L}^{n}(x)$$

FTC : $f(x) - f(y) = \int_{0}^{1} \langle \nabla f(ty + (1 - t)x), (y - x) \rangle dt$

$$\int_{B} |f - f_{B}| d\mathscr{L}^{n} \leq C(n) r \Big(\int_{B} \underbrace{|\nabla f|^{p}}_{?} d\mathscr{L}^{n} \Big)^{1/p}$$

$$\int_{B} |f - f_{B}| d\mathscr{L}^{n} \leq \int_{B} \int_{B} |f(x) - f(y)| d\mathscr{L}^{n}(y) d\mathscr{L}^{n}(x)$$

FTC : $f(x) - f(y) = \int_{0}^{1} \langle \nabla f(ty + (1 - t)x), (y - x) \rangle dt$

$$|f(x)-f(y)| \le \int_{[x,y]} |\nabla f|$$

$$\int_{B} |f - f_{|B}| d\mathcal{L}^{n} \leq C(n) r \left(\int_{B} \underbrace{|\nabla f|^{p}}_{?} d\mathcal{L}^{n} \right)^{1/p}$$

$$\begin{aligned} \int_{B} |f - f_{|B}| d\mathcal{L}^{n} &\leq \int_{B} \int_{B} |f(x) - f(y)| d\mathcal{L}^{n}(y) d\mathcal{L}^{n}(x) \\ \text{TFC} &: f(x) - f(y) = \int_{0}^{1} \langle \nabla f(ty + (1 - t)x), (y - x) \rangle dt \end{aligned}$$

$$|f(x)-f(y)| \le \int_{\gamma} |\nabla f|$$

Poincaré inequalities in metric measure spaces

Definition Heinonen-Koskela 98

A non-negative Borel function *g* on *X* is an upper gradient for $f : X \to \mathbb{R} \cup \{\pm \infty\}$ if

$$|f(x)-f(y)|\leq \int_{\gamma}g,$$

Poincaré inequalities in metric measure spaces

Definition Heinonen-Koskela 98

A non-negative Borel function *g* on *X* is an upper gradient for $f : X \to \mathbb{R} \cup \{\pm \infty\}$ if

$$|f(x)-f(y)|\leq \int_{\gamma}g,$$

	б	1	۲	
	/			
1				
×				

 $\forall x, y \in X$ and every rectifiable curve γ_{xy} .

Examples

- If there are no rectifiable curves in *X* then $g \equiv 0$ is an upper gradient of every function.
- If $f \in LIP(X)$ then $g \equiv LIP(f)$ and g(x) = Lip f(x) are upper gradients for f.

Poincaré inequalities in metric measure spaces

Definition

Heinonen-Koskela 98

Let $1 \le p < \infty$. (X, d, μ) supports a weak *p*-Poincaré inequality if there exist constants $C_p > 0$ and $\lambda \ge 1$ such that for every function $f : X \to \mathbb{R}$ and every upper gradient *g* of *f*, the pair (f, g) satisfies

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \leq C_p \, r \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

 $\forall B(x,r) \subset X.$

Notation:

$$\int_{B} f \, d\mu = f_{B} = \frac{1}{\mu(B)} \int_{B} f \, d\mu$$

Examples

- $(\mathbb{R}^n, |\cdot|, \mathscr{L}^n)$
- Riemannian manifolds with non-negative Ricci curvature
- Heisenberg group with its Carnot-Carathéodory metric and Haar measure → Subriemannian geometry
- Boundaries of certain hyperbolic buildings: Bourdon-Pajot spaces → Geometric group theory
- Laakso spaces, ...

Examples

- $(\mathbb{R}^n, |\cdot|, \mathscr{L}^n)$
- Riemannian manifolds with non-negative Ricci curvature
- Heisenberg group with its Carnot-Carathéodory metric and Haar measure → Subriemannian geometry
- Boundaries of certain hyperbolic buildings: Bourdon-Pajot spaces → Geometric group theory
- Laakso spaces, ...

Cheeger 99 Keith 04

 $\left. \begin{array}{c} X \text{ complete and } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ admits a "differentiable structure"}$

• *X* is connected

- *X* is connected
- Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex} \end{array}$$

- *X* is connected
- Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex} \end{array}$$

Definition

A metric space (X, d) is quasiconvex if there exists a constant $C \ge 1$ such that for each pair of points $x, y \in X$, there exists a curve γ connecting x and y with

$$\ell(\gamma) \le Cd(x,y).$$

• X is connected

• Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex} \end{array}$$

 \notin (*S*₃, *d*, μ) is quasiconvex but does not admit any *p*-PI

• X is connected

• Semmes 98 $p < \infty$

$$\left. \begin{array}{c} X \text{ complete } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex} \end{array}$$

 \Leftarrow (*S*₃, *d*, μ) is quasiconvex but does not admit any *p*-PI

• Heinonen-Koskela 98, Kinnunen-Latvala 02, Saloff-Coste 02, Keith 03, Miranda 03, Korte 07,

$$Q_0 = [0, 1]^2$$

A counterexample: Sierpiński carpet

Sierpiński carpet

Sierpiński carpet: $S_3 = (X, d, \mu)$

 $d = d_{e|X}$

Equally distributing unit mass over Q_n leads to a natural probability doubling measure μ on S_3 . (μ is comparable to \mathcal{H}^s , $s = \frac{\log 8}{\log 3}$).

• (S_3, d, μ) does not admit a 1-PI

• (S_3, d, μ) does not admit a 1-PI

Let T_n be the vertical strip of width 3^{-n} .

20 200 200 20	
	H. HOL. HOL. H
00 00	
5000 500 50	
1000	
9.9 9.9	
PH PHPH PHPH PH	** **** **** **
	H.JOL.JOL.J(

 T_1

PERSONAL PROPERTY AND A PROPERTY AND	
	- H
	3030
	-11-11-1
	3 0
a first af a state of a second a second a first a second	1
	000
	10.00
	ww
	3030
HHOL.HOL.HO	H
	300
	000
	100
	- H

 T_2

	7000 7000 7000 70
	797 FR FR FR FR
	206.26 H.26
	H H H H
H.H. H.H.	H.H. H.H
	707 707 707 7
	206-26 8-26

 T_3

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le C \, r \Big(\int_{B(x,r)} g^p d\mu \Big)^{1/p}$$

Define
$$f_n \in \text{LIP}(S_3)$$
 such that $\int_{S_3} |f_n - (f_n)_{S_3}| d\mu > C$ but

$$\int_{S_3} \lim (f_n) d\mu = 3^n \cdot \mu(T_n) = 3^n \cdot \frac{2}{8^n} \to 0 \ (n \to \infty)$$

• (S_3, d, μ) does not admit any *p*-PI

Bourdon-Pajot 02 Let (X, d, μ) be a bounded metric measure space with μ doubling and p-PI, and let $f : X \longrightarrow I$ be a surjective Lipschitz function from X onto an interval $I \subset \mathbb{R}$. Then, $\mathscr{L}^1_{|I} \ll f_{\#}\mu$. Here $f_{\#}\mu$ denotes the push-forward measure of μ under f.

Proof.

Let *f* be the projection on the horizontal axis. It can be checked that $f_{\#}\mu \perp \mathscr{L}^1$.

Question Higher dimensions?

Generalized Sierpinski carpets: Sa

$$\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\}^{\mathbb{N}}$$

Generalized Sierpinski carpets: Sa

$$\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{ \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots \right\}^{\mathbb{N}}$$

For $\mathbf{a} = \left(\frac{1}{a}, \frac{1}{a}, \frac{1}{a}, \ldots \right) a$ odd,

Generalized Sierpinski carpets: S_a

$$\mathbf{a} = (a_1^{-1}, a_2^{-1}, \ldots) \in \left\{ \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots \right\}^{\mathbb{N}}$$

For $\mathbf{a} = \left(\frac{1}{a}, \frac{1}{a}, \frac{1}{a}, \ldots \right) a$ odd,

• *S*_a does not admit any *p*-PI

Mackay, Tyson, Wildrick 13

- $(S_{\mathbf{a}}, d, \mu)$ supports a 1-PI if and only if $\mathbf{a} \in \ell^1$
- $(S_{\mathbf{a}}, d, \mu)$ supports a *p*-PI for some p > 1 if and only if $\mathbf{a} \in \ell^2$

Which is the role of the exponent *p*? $\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \leq Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$

Hölder inequality:
$$p$$
-PI \Longrightarrow q -PI for $q \ge p$

Which is the role of the exponent *p*?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: *p*-PI \Longrightarrow *q*-PI for *q* \ge *p*

Federer-Fleming, Mazýa 60 Miranda 03 $(\mathbb{R}^n) p = 1 \iff$ Isoperimetric inequality • Which is the role of the exponent *p*? $\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \leq Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$

Hölder inequality: *p*-PI \Longrightarrow *q*-PI for *q* \ge *p*

Federer-Fleming, Mazýa 60 Miranda 03 $(\mathbb{R}^n) p = 1 \iff$ Isoperimetric inequality

 $\begin{array}{c|c} & & \text{Example} \\ & & & \text{v}_{0.75} \\ & & & \text{v}_{0.5} \\ & & & \text{v}_{0.5} \\ & & & \text{v}_{0.25} \\ & & & & \text{v}_{0.25} \end{array} & (X, |\cdot|, \mathscr{L}^2_{|X}) \ X \text{ has } p - \text{PI} \iff \\ & & & p > m + 1 \end{array}$

What happens when $p \to \infty$?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: p-PI \Longrightarrow q-PI for $q \ge p$

What happens when $p \to \infty$?

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \le Cr \Big(\int_{B(x,\lambda r)} g^p d\mu \Big)^{1/p}$$

Hölder inequality: p-PI \Longrightarrow q-PI for $q \ge p$

Definition

 (X, d, μ) supports a weak ∞ -Poincaré inequality if there exist constants C > 0 and $\lambda \ge 1$ such that for every function $f : X \to \mathbb{R}$ and every upper gradient g of f, the pair (f, g) satisfies

$$\int_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \leq Cr \|g\|_{L^{\infty}(B(x,\lambda r))}$$
$$\forall B(x,r) \subset X.$$

$\left. \begin{array}{c} X \text{ complete and } \infty \text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is quasiconvex}$

#

Sierpiński carpet

•
$$d = d_{e|X}$$
 $\mu = \mathcal{H}^s, s = \frac{\log 8}{\log 3}$

- (*X*, *d*) is quasiconvex
- (X, d, μ) does not admit any *p*-PI, $1 \le p \le \infty$

And a differentiable structure?

Modulus of a family of curves

Definition

Let $\Gamma \subset \Upsilon = \{\text{non constant rectifiable curves of } X\}$ and $1 \leq p \leq \infty$. For $\Gamma \subset \Upsilon$, let $F(\Gamma)$ be the family of all Borel measurable functions $\rho : X \to [0, \infty]$ such that

$$\int_{\gamma} \rho \ge 1 \text{ for all } \gamma \in \Gamma.$$

$$\mathsf{Mod}_{p}(\Gamma) = \begin{cases} \inf_{\rho \in F(\Gamma)} \int_{X} \rho^{p} d\mu, & \text{if } p < \infty \\ \inf_{\rho \in F(\Gamma)} \|\rho\|_{L^{\infty}}, & \text{if } p = \infty \end{cases}$$

If some property holds for all curves $\gamma \in \Upsilon \setminus \Gamma$, where $Mod_p \Gamma = 0$, then we say that the property holds for *p*-a.e. curve.

Remark Mod_p is an outer measure

Lemma

Let $\Gamma \subset \Upsilon$ and $1 \le p \le \infty$. The following conditions are equivalent: (a) Mod_p $\Gamma = 0$.

(b) There exists a Borel function $0 \le \rho \in L^p(X)$ such that $\int_{\gamma} \rho = +\infty$, for each $\gamma \in \Gamma$ and $\|\rho\|_{L^{\infty}} = 0$.

Examples

 $\mathbb{R}^n, n \ge 2$

p-"thick" quasiconvexity

Definition

 (X, d, μ) is a *p*-"thick" quasiconvex space if there exists $C \ge 1$ such that $\forall x, y \in X$, $0 < \varepsilon < \frac{1}{4}d(x, y)$,

$$\operatorname{Mod}_p(\Gamma(B(x,\varepsilon),B(y,\varepsilon),C))>0,$$

where $\Gamma(B(x, \varepsilon), B(y, \varepsilon), C)$ denotes the set of curves $\gamma_{p,q}$ connecting $p \in B(x, \varepsilon)$ and $q \in B(y, \varepsilon)$ with $\ell(\gamma_{p,q}) \leq Cd(p,q)$.

Geometric characterization: $p = \infty$

D-C, Jaramillo, Shanmugalingam 11

Let (X, d, μ) be a complete metric space with μ doubling. Then,

X is ∞ -"thick" quasi-convex \iff X admits ∞ -PI

D-C, Jaramillo, Shanmugalingam 11 Let (X, d, μ) be a connected complete metric space supporting a doubling Borel measure μ . Then

$$LIP^{\infty}(X) = N^{1,\infty}(X)$$
 with c.e.s. $\iff X$ admits ∞ -PI

Geometric implications of *p*-PI

$$\left. \begin{array}{c} X \text{ complete and } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ is } p\text{-"thick" quasiconvex} \end{array}$$

Remarks

- *p*-"thick" quasiconvex \implies quasiconvex
- The characterization is no longer true for $p < \infty$ \Leftarrow

A counterexample

$$\mu = \sum_{j} \chi_{Q_j} \cdot \mu_j$$
 doubling measure

- *X* is *p*-thick quasi-convex $1 \le p \le \infty \Longrightarrow \infty$ -PI
- X admits an ∞ -PI but does not admit any *p*-PI $(1 \le p < \infty)$

p–Poincaré inequalities

D-C, Shanmugalingam 13+n, $n \in \mathbb{N}$ Let (X, d, μ) be a connected complete Ahlfors *Q*-regular space. Then the following conditions are equivalent:

- (1) *X* supports a *p*-Poincaré inequality for some p > Q.
- (2) There are constants $C > 0, \tau > 1$ such that every $u \in N^{1,p}(X)$ is $(1 \frac{Q}{p})$ -Hölder continuous.
- (3) There is a constant C > 0 such that whenever $x_0, y_0 \in X$,

$$\operatorname{Mod}_p(\Gamma_{x_0,y_0}) \geq rac{C}{d(x_0,y_0)^{p-Q}},$$

where Γ_{x_0,y_0} denotes the family of *C*-quasiconvex curves connecting x_0 to y_0 .

Persistence of *p*-PI under GH-limits

Cheeger 99 If $\{X_n, d_n, \mu_n\}_n$ with μ_n doubling measures supporting a *p*-PI $p < \infty$ (with constants uniformly bounded), and $\{X_n, d_n, \mu_n\}_n \xrightarrow{G-H} (X, d, \mu)$, then (X, d, μ) has μ doubling and supports a *p*-PI.

Corollary

The ∞ -PI is non-stable under measured Gromov-Hausdorff limits.

Not Self-improvement of ∞ -PI

Keith-Zhong 08 If *X* is a complete metric space equipped with a doubling measure satisfying a *p*-Poincaré inequality for some $1 , then there exists <math>\varepsilon > 0$ such that *X* supports a *q*-Poincaré inequality for all $q > p - \varepsilon$.

Cheeger Analysis

Definition

A measurable differentiable structure on (X, d, μ) is a countable collection $\{(X_{\alpha}, \mathbf{x}_{\alpha})\}_{\alpha}$ of measurable sets $X_{\alpha} \subset X$ and Lipschitz coordinates $\mathbf{x}_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{N(\alpha)}) : X \longrightarrow \mathbb{R}^{N(\alpha)}$ such that (*i*) $\mu(X \setminus \bigcup_{\alpha} X_{\alpha}) = 0$; (*ii*) $\exists N \ge 0$ (dimension) such that $N(\alpha) \le N$ for each $(X_{\alpha}, \mathbf{x}_{\alpha})$; (*iii*) If $f : X \to \mathbb{R}$ is Lipschitz, then for each $(X_{\alpha}, \mathbf{x}_{\alpha})$ there exists a unique (up to a set of zero measure) map $d^{\alpha}f \in L^{\infty}(X_{\alpha}; \mathbb{R}^{N(\alpha)})$ such that

$$\lim_{\substack{y \to x \\ y \neq x}} \frac{|f(y) - f(x) - d^{\alpha}f(x) \cdot (\mathbf{x}_{\alpha}(y) - \mathbf{x}_{\alpha}(x))|}{d(y, x)} = 0$$

for μ -a.e. $x \in X_{\alpha}$.

Cheeger Analysis

Cheeger differential of *f* (linear operator)

$$f \mapsto df := \sum_{\alpha=1}^{\infty} \chi_{X_{\alpha}} \cdot d^{\alpha} f \qquad |df(x)| = \operatorname{Lip} f(x)$$

- By Rademacher Euclidean spaces: single coordinate chart $(\mathbb{R}^n, \mathbf{x})$, with $\mathbf{x} = (x_1, \cdots, x_n)$ coordinate functions, $df = \nabla f$
- By Pansu 89: Carnot groups $\mathbb{R}^3 = \{(x, y, z)\}$ with Carnot-Caratheodory metric, $\mathbf{x} = (x_1, x_2), df = \nabla_H f$.

Measured differentiable structures

X complete, μ doubling

Cheeger 99

$$\left. \begin{array}{c} X \text{ supports } p\text{-PI} \\ 1 \le p < \infty \end{array} \right\} \Longrightarrow X \text{ admits a "differentiable structure"}$$

Where is the *p*?

Keith 04

X satisfies Lip-lip \Longrightarrow X admits a "differentiable structure"

"The infinitesimal behaviour at a generic point is essentially independent of the scales used for the blow-up at that point"

Definition

X satisfies Lip-lip if $\exists C > 0$ such that $\forall f \in LIP(X)$,

 $\operatorname{Lip} f(x) \le C \operatorname{lip} f(x) \quad \mu\text{-}a.e.x$

Here, $\operatorname{Lip} f(x) := \limsup_{r \to 0} \sup_{0 < d(y,x) < r} \frac{|f(y) - f(x)|}{r},$ and $\operatorname{lip} f(x) := \liminf_{r \to 0} \sup_{0 < d(y,x) < r} \frac{|f(y) - f(x)|}{r}.$

Remark If $\mu \sim \lambda \Longrightarrow (X, d, \mu)$ has Lip-lip iff (X, d, λ) has Lip-lip

Keith 04

 $\left. \begin{array}{c} X \text{ complete and } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ has the Lip-lip condition} \end{array} \right\}$

Keith 04

 $\left. \begin{array}{c} X \text{ complete and } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ has the Lip-lip condition} \end{array} \right\}$

Keith 04

 $\left. \begin{array}{c} X \text{ complete and } p\text{-PI} \\ \mu \text{ doubling} \end{array} \right\} \Longrightarrow X \text{ has the Lip-lip condition}$

Proof.

For μ -a.e.x,

$$\begin{aligned} \frac{1}{C}\operatorname{Lip} f(x) &\leq \limsup_{r \to 0} \frac{1}{r} \oint_{B(x,r)} |f - f_{B(x,r)}| \, d\mu \\ &\leq L \limsup_{r \to 0} \left(\int_{B(x,r)} \operatorname{lip} f(x)^p d\mu \right)^{\frac{1}{p}} = L \operatorname{lip} f(x) \end{aligned}$$

And ∞ -PI?

$X \text{ complete and } \infty \text{-PI} \\ \mu \text{ doubling} \end{cases} \xrightarrow{\text{NO a.s.}} X \text{ has the Lip-lip condition}$ Bate 12, Gong 12 $X \text{ satisfies } \sigma - \text{Lip-lip} \\ \mu \text{ pointwise doubling} \end{cases} \iff X \text{ admits a Cheeger MDS}$
Alberti representations

- $\Gamma(X)$ set of biLipschitz $\gamma : A \subset \mathbb{R} \to X$, A compact
- \mathcal{P} probability measure on $\Gamma(X)$
- $\forall \gamma \in \Gamma(X)$, μ_{γ} Borel measure on *X* with $\mu_{\gamma} \ll \mathcal{H}^{1}_{|\gamma}$

Definition

 $(\mathcal{P}, \{\mu_{\gamma}\}_{\gamma})$ is an Alberti representation of μ if for each Borel set $B \subset X$

$$\mu(B) = \int_{\Gamma(X)} \mu_{\gamma}(B) d\mathcal{P}$$

Bate12 Cheeger MDS $\iff \exists$ "collection" of AR

Alberti representations

- By Fubini's theorem there exists *n* independent Alberti representations of Lebesgue measure
- For $f : \mathbb{R}^n \to \mathbb{R}$ Lipschitz and γ curve (from AR), $f \circ \gamma$ is Lipschitz therefore differentiable a.e. (Lebesgue)
- By combining such derivatives from each AR one prove that partial derivatives exists a.e.
- Partial derivatives form a derivative a.e.

Bate 12 Let μ be a Radon measure on $(\mathbb{R}^n, |\cdot|), n = 1, 2$. Every Lipschitz function is differentiable μ -a.e. $\iff \mu \ll \mathscr{L}^n$.

Derivations

Definition Weaver 99 A bounded linear operator

 $\delta: \operatorname{Lip}_b(X) \to L^\infty(X,\mu)$

is called a (metric) derivation if it satisfies

- product rule: $\delta(fg) = f \, \delta g + g \delta f \, \forall f, g \in \operatorname{Lip}^{\infty}(X);$
- weak-star continuity: if $f_i \stackrel{*}{\rightharpoonup} f$ in $\operatorname{Lip}^{\infty}(X) \Rightarrow \delta f_i \stackrel{*}{\rightharpoonup} \delta f$ in L^{∞}_{μ}

 $\Upsilon(X,\mu)$ space of derivations with respect to μ on X.

We call a set $\{\delta_i\}_{i=1}^k$ linearly dependent in $\Upsilon(X, \mu)$ if there exist $\{\lambda_i\}_{i=1}^k$ in $L^{\infty}(X, \mu)$, not all zero, so that

$$\lambda_1 \delta_1 + \cdots + \lambda_k \delta_k = 0 \quad \operatorname{rank} k.$$

Gong 12 (*X*, *d*, μ) admits a non-trivial basis of derivations \iff Cheeger MDS

Gong 13 Let μ be a Radon measure on $(\mathbb{R}^n, |\cdot|)$. Then $\Upsilon(X, \mu)$ has rank- $n \iff \mu \ll \mathscr{L}^n$. Moreover, derivations with respect to μ are linear combinations of the differential operators $\{\partial/\partial x_i\}_{i=1}^n$ with scalars in $L^{\infty}(\mathbb{R}^n, \mu)$.

D-C, Gong, Jaramillo 13 a.s Sierpiński fractals are differentiably trivial with respect to the Euclidean metric.

So...

a doubling | p- ₽I 1≤p<∞ => Lip-lip Cheeger MDS ∞-91 ≠> AR measure 1 Basis of derivations

Merci pour votre attention!

Isoperimetric inequality

The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length.

Let us consider the inequality:

$$\left(\int_{\Omega}|u|^{q}d\mu\right)^{1/q}\leq C\int_{\Omega}|\nabla u|d\mu$$

where $q \ge 1$, $\Omega \subset \mathbb{R}^n$ open, μ is a measure and $u \in C_0^{\infty}(\Omega)$. Federer-Fleming, Mazýa 1960 The inequality is satisfied with $q \ge 1$ if and only if

$$(\mu(\Omega))^{\frac{1}{q}} \leq C\mathscr{H}^{n-1}(\partial\Omega),$$