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Zero order calculus

(X, d, ) metric measure space, u Borel regular measure
Coifmann-Weiss 70" Spaces of homogeneous type.

Definition
p is doubling if 3C > 0 constant such that

0 < u(B(x,2r)) < Cu(B(x,7)) < oo VxeX,r>0.

X complete + ;1 doubling = X proper

o Lebesgue points
o Vitali Coverings
© Maximal operator...



Examples
o (RY,|-|, 2" C=2"
)
o (C7 ’ ’ |7‘%Zag3

— | B |
HH HH HH HH

° ([07 1]7 |x - y|1/27 %2)

flx)=x |f (x) — f(y)]
jx —y[1/2

5

A curve in X is a continuous mapping 7 : [a,b] — X.
A rectifiable curve is a curve with finite length.

=[x —y[* 50
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Rademacher Theorem Let f : R" — R be a Lipschitz function.

Then f is differentiable x € R™
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First order analysis

Rademacher Theorem Let f : R" — R be a Lipschitz function.

Then f is differentiable x € R™

°o up<< " OK
e H:5x0 W(R7|"7H)
o 11 = length of a (lipschitz) curve ~ (R2,| - |, u)

Stepanov Theorem f : R” — R is differentiable .#"-a.e. in S(f),

S(f) == {x e R" : Lipf(x) := lir;;}clpw < oo}.
y#x



First order analysis on metric spaces
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Lipschitz function spaces

(X, d) metric space

Definition
A function f : X — Ris Lipschitz if there is a constant C > 0
such that

[flx) —fw)l < Cd(x,y) vx,y e X.



Lipschitz function spaces

(X, d) metric space

Definition
A function f : X — Ris Lipschitz if there is a constant C > 0

such that
If(x) —f(y)] < Cd(x,y) Vx,yeX.

* LIP(X) = {f : X — R : f is Lipschitz}
* LIP*(X) = {f : X — R : f is Lipschitz and bounded}

IfllLeee = [Iflloo + LIP(f)



Pointwise Lipschitz function spaces

Definition
Given a function f : X — R the pointwise Lipschitz constant of
f atx € X is defined as

o () — lim sup L) =S W)
Lpf(x>—1r§1;sgp iy
yF£x



Pointwise Lipschitz function spaces

Definition
Given a function f : X — R the pointwise Lipschitz constant of
f atx € X is defined as

o F(2) — limsup V@ =W
Lipf(x) =1 y;sgp i,y
yx

Example
Iff € ! (Q), Q (g R" (or of a Riemannian manifold), then

Lipf(x) = |Vf(x)] Vxe Q.
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Classical Poincaré inequality

One way to view the Fundamental Theorem of Calculus is:

\ infinitesimal data ~~ local control \

This principle can apply in very general situation in the form of
a Poincaré inequality:

3C =C(n) > 0: VB = B(x,r) CR"Vf € WHP(R")(1 < p < 0)

f =l < con( f orrazn)”

Notation:

Jsi2" =t = gy [g0"

Applications: Harmonic Analysis and PDEs
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Poincaré inequalities in metric measure spaces
(X, d, 1) metric measure space
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Poincaré inequalities in metric measure spaces
(X, d, 1) metric measure space

f i —faldz < cone( {, |Vf|”d.$")/
Proof.
fr-slaz < { | 1w - roae iz

FTC: f(x) = f(y) = /O<Vf(ty+(1—f) ): (y — x))dt

r
A.ux f - < [ 19

« te cﬂ,,‘] [X,y]



Poincaré inequalities in metric measure spaces
(X, d, 1) metric measure space

fy-soe<conf g

?

Proof.
][[f fB|d$" ][][[f y)|d2L" (y)d2L" (x)
TFC : f(x) — f(y) = /O (Vf(ty + (1 09). (g — D)t

r Y

1]
/ f ) < [ 19

x



Poincaré inequalities in metric measure spaces

Definition
Heinonen-Koskela 98

A non-negative Borel function g on X is an upper gradient for
f: X —=>RU{£oo}if
Y

¥
f) ) < [ /

Vx,y € X and every rectifiable curve ~y,.



Poincaré inequalities In metric measure spaces

Definition
Heinonen-Koskela 98

A non-negative Borel function g on X is an upper gradient for
f: X —=>RU{£oo}if

) — f(y)] < / g i

Vx,y € X and every rectifiable curve ~y,.
Examples

o If there are no rectifiable curves in X then g = 0 is an upper
gradient of every function.

o If f € LIP(X) then g = LIP(f) and g(x) = Lip f(x) are upper
gradients for f.



Poincaré inequalities In metric measure spaces

Definition

Heinonen-Koskela 98

Let1 <p < oo. (X,d, u) supports a weak p-Poincaré inequality
if there exist constants C, > 0 and A > 1 such that for every
function f : X — R and every upper gradient g of f, the pair
(f,g) satisfies

1p
- du < C Pd
][B(x,r)v fB(x,r)’ o= pr(][B(x,/\r)g M)
VB(x,r) C X.

Notation:

Jfau=ta= i [ 7



Examples

©
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Riemannian manifolds with non-negative Ricci curvature

©

©

Heisenberg group with its Carnot-Carathéodory metric
and Haar measure ~~ Subriemannian geometry

@ Boundaries of certain hyperbolic buildings: Bourdon-Pajot
spaces~ Geometric group theory

©

Laakso spaces, ...



Examples

° (an ’ ’ |’$n)
o Riemannian manifolds with non-negative Ricci curvature

o Heisenberg group with its Carnot-Carathéodory metric
and Haar measure ~~ Subriemannian geometry

@ Boundaries of certain hyperbolic buildings: Bourdon-Pajot
spaces~ Geometric group theory

o Laakso spaces, ...
Cheeger 99 Keith 04

X complete and p-PI ) ) )
) —> X admits a “differentiable structure”
w1 doubling



Geometric implications of p-Poincaré inequalities

o X is connected
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Geometric implications of p-Poincaré inequalities

o X is connected

@ Semmes 98 p < oo

X complete p-PI ) )
. = X is quasiconvex
i doubling

Definition

A metric space (X, d) is quasiconvex if there exists a constant
C > 1 such that for each pair of points x,y € X, there exists a
curve v connecting x and y with

e N

l(y) < Cd(x,y). \ '
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Geometric implications of p-Poincaré inequalities

o X is connected

@ Semmes 98 p < oo

X complete p-PI . .
. = X is quasiconvex
p doubling

(S3,d, 1) is quasiconvex but does not admit any p-PI

o Heinonen-Koskela 98, Kinnunen-Latvala 02, Saloff-Coste
02, Keith 03, Miranda 03, Korte 07, ....



Sierpiniski carpet

Qo =1[0,1




A counterexample: Sierpiniski carpet
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Sierpiniski carpet



Sierpiniski carpet: S3 = (X, d, i)
d= de|X

Equally distributing unit mass over Q, leads to a natural
probability doubling measure £ on S3.

( pis comparable to H®,s = %ggg).




Counterexample

o (S3,d, p) does not admit a 1-PI




Counterexample

o (S3,d, p) does not admit a 1-PI

Let T, be the vertical strip of width 37".
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Counterexample

1/p
~faen|dp < C rd
][B(x,r)Uf fB( ’ )| . 1’( ][B(x,r)g M)

Define f,, € LIP(S3) such that ][s Ifn — (fu)s,|dp > C but
3

n

[ GG = 3" (1) =3 20 (1 o)
Ss



Counterexample

o (S3,d, i) does not admit any p-PI

Bourdon-Pajot 02 Let (X, d, 1) be a bounded metric measure
space with ;s doubling and p-PI, and letf : X — I be a
surjective Lipschitz function from X onto an interval I C R.
Then, .Zﬁ & fup. Here f i denotes the push-forward measure
of ;1 under f.

Proof.

Let f be the projection on the horizontal axis. It can be checked

that fupul 2. O

Question Higher dimensions?



Generalized Sierpinski carpets: S,




Generalized Sierpinski carpets: S,

o S, does not admit any p—PI




Generalized Sierpinski carpets: S,

For a:<,7,7 ,) a odd,

o S, does not admit any p—PI

Mackay, Tyson, Wildrick 13
o (Sa,d, p) supports a 1-PILif and only if a € ¢!
o (Sa,d, ) supports a p-PI for some p > 1 if and only if a € 2



Which is the role of the exponent p?
f [f = focenldun < Cr(][ gpdu)l/p
B(x,r) ’ B B(x,\r)

Holder inequality: p-PI=g-PI forq > p
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(R")p =1 <= Isoperimetric inequality



Which is the role of the exponent p?
1/p
— p
][B o TIBeenldn < Cr( ][B o du)

Holder inequality: p-PI=g-PI forq > p

Federer-Fleming, Mazya 60 Miranda 03
(R")p =1 <= Isoperimetric inequality

Y1

Yo.75

Yo.s

Yo.25

Yo

Example
X:={(x,y) €eR?: x>0,0<y <"}

X,|-|,£?x) X has p—PI <=
| P
p>m+1



What happens when p — 00?

1/p
— < P
][B(x,r)lf fB@xpldp < Cr( ][B(x,Ar)g du>

Holder inequality: p-PI=¢q-Pl for g > p



What happens when p — 00?

1/p
_ < P
fB(x,r)[f ]‘-B(ac,r)|d,u = C?’( ][B(x)\r)g dﬂ)

Holder inequality: p-PI=¢q-Pl for g > p

Definition

(X, d, ) supports a weak co-Poincaré inequality if there exist
constants C > 0 and A > 1 such that for every function

f : X — R and every upper gradient g of f, the pair (f,g)
satisfies

][B(x,r)[f Soenldp < Crliglliee )

VB(x,r) C X.



X complete and oco-PI
p doubling

Sierpinski carpet

} =X is quasiconvex

. _ays . log8
o d=dex ,u-?-[,s—log3

o (X,d) is quasiconvex

o (X,d,n) does admit
any p-PI,1 <p < o0

And a differentiable structure?



Modulus of a family of curves

Definition

LetI' C T = {non constant rectifiable curves of X} and
1<p<oo.ForT' CT,let F(T') be the family of all Borel
measurable functions p : X — [0, oo such that

/le forall vy €.
.

inf,cr(r) Jx PP dp, if p < oo
Mod,(I') =

inferr) plloe, if

If some property holds for all curves v € T\I', where
Mod, I' = 0, then we say that the property holds for p—a.e.
curve.

Remark
Mod,, is an outer measure



Lemma
LetI' C Tand 1 < p < oo. The following conditions are equivalent:

(a) Mod, " = 0.
(b) There exists a Borel function 0 < p € LP(X) such that
J, p=too, foreach v € T and ||p||r = 0.

Examples
R*n>2
= \‘ -
\\ B -‘1\\ [
N : Ty
=l i = o
, L
. P l'| \“-‘.’
MUC[P(PE) =0 b

MGJP (P‘(ﬂ) =
(p &nD



p-"thick” quasiconvexity

Definition
(X,d, u) is a p-“thick” quasiconvex space if there exists C > 1
such thatVx,y € X,0<e < %d(x,y),

MOdP(F(B(xv 6)7 B(]/, 5)7 C)) > 07

where I'(B(x, ¢), B(y, €), C) denotes the set of curves v, 4
connecting p € B(x,¢) and q € B(y, €) with £(,5) < Cd(p, q).




Geometric characterization: p = oo

D-C, Jaramillo, Shanmugalingam 11
Let (X, d, 1) be a complete metric space with ;1 doubling. Then,

’ X is co-“thick” quasi-convex <= X admits co-PI




Analytic characterization

D-C, Jaramillo, Shanmugalingam 11 Let (X,d, 1) be a
connected complete metric space supporting a doubling Borel
measure . Then

LIP®(X) = NL>(X) with c.e.s. <= X admits co-PI




Geometric implications of p-PI

X complete and p-PI ) ) )
. —Xis p-“thick” quasiconvex
p doubling

Remarks

o p-"thick” quasiconvex = quasiconvex

o The characterization is no longer true for p < oo



A counterexample

W= Zj Xq; * #j doubling measure

O 0O 0O

[

[

[

0O0OO0ODO0OO0ODODOODO
DDD DDD DDD
0O0OO0ODO0OO0ODODOODO
0O 0O0o 0O 0O0o
DDD DDD
0O 0O0o 0O 0O0o
0O0OO0ODO0OO0ODODOODO
DDD DDD DDD
0O0OO0ODO0OO0ODODOODO

o Xis p-thick quasi-convex 1 < p < oo = o0o-PI
o X admits an co-PI but does admit any p-PI

(1<p<o)



p—Poincaré inequalities

D-C, Shanmugalingam 13+n, n € N Let (X, d, u) be a connected

complete Ahlfors Q-regular space. Then the following
conditions are equivalent:

(1) X supports a p-Poincaré inequality for some p > Q.
(2) There are constants C > 0,7 > 1 such that every
u e NYP(X)is (1 — %)—Hblder continuous.

(3) There is a constant C > 0 such that whenever xg, 1o € X,

C

Mod,(Ty, ) > —
(0] p( o,yo) = d(xo,yo)”_Q

where I'y, ,, denotes the family of C-quasiconvex curves
connecting x¢ to yo.



Persistence of p-PI under GH-limits

Cheeger 99
If {X,,,dy, ptn }n With p, doubling measures supporting a p-PI

(with constants uniformly bounded), and

{Xn,dn,,un}n (X d, p), then (X, d, 1) has p doubling and
supports a p-PL.

Corollary
The oo-PlI is non-stable under measured Gromov-Hausdorff limits.



Not Self-improvement of co-PI

Keith-Zhong 08 If X is a complete metric space equipped with a
doubling measure satisfying a p-Poincaré inequality for some

1 < p < o0, then there exists € > 0 such that X supports a
g-Poincaré inequality forallg > p —«.

[m] 000D
(] [ [ o o[ Joo
[m] 000D
[m] [m]

J
0 Da@
DDD@




Cheeger Analysis

Definition
A measurable differentiable structure on (X, d, ) is a countable
collection { (X4, Xo) }o of measurable sets X, C X and Lipschitz

coordinates x, = (x}, ... ,xg(a)) : X — RN@ such that

(i) 1(X\UaXa) =0
(ii) AN > 0 (dimension) such that N(«) < N for each (X, Xs);
(ii1) If f : X — R is Lipschitz, then for each (X,, x,) there exists

a unique (up to a set of zero measure) map
d°f € L=(X,; RN(®) such that

i ) =) — 4 () (50 (y) ~ xal)] _

y—x d(y,
' (v, x)

for pu-a.e. x € X,.



Cheeger Analysis

Cheeger differential of f (linear operator)

frodf =) xx.-d°f  |df(x)] = Lipf(x)
a=1

o By Rademacher Euclidean spaces: single coordinate chart
(R",x), with x = (x1, - - - , x,) coordinate functions, df = Vf

o By Pansu 89: Carnot groups R® = {(x,y,z)} with
Carnot-Caratheodory metric, x = (x1,x2), df = Vyf.



Measured differentiable structures

X complete, i« doubling
Cheeger 99

X supports p-PI

= X admits a “differentiable structure”
1<p<oo

Where is the p?
Keith 04

X satisfies Lip-lip = X admits a”differentiable structure”



Lip-lip condition

“The infinitesimal behaviour at a generic point is essentially independent of
the scales used for the blow-up at that point”

Definition
X satisfies Lip-lip if 3C > 0 such that Vf € LIP(X),

Lipf(x) < Clipf(x) p-a.ex

Here,
Lipf(x) :==limsup sup M,
r=0 0<d(y7x)<r r
and
lipf(x) = liminf sup LW =FE
r—0 0<d(yx)<r r
Remark

If p ~ X = (X,d, i) has Lip-lip iff (X,d, \) has Lip-lip



Lip-lip condition
Keith 04
X complete and p-PI

. = X has the Lip-lip condition
i doubling
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Lip-lip condition
Keith 04
X complete and p-PI

. = X has the Lip-lip condition
i doubling

Proof.
For p-a.e.x,

1_. . 1
E Llpf(x) <lim sup — B(x) lf _fB(x,r) | du

r—0 T

1
< Llimsup ( ][m lipf(xPdun)’ = Llipf(x)

r—0



And oco—PI?

NO a.s.

X complete and co-PI
—" X has the Lip-lip condition

p doubling
Bate 12, Gong 12

X satisfies o —Lip-lip
L . <= X admits a Cheeger MDS
1 pointwise doubling



Alberti representations

o I'(X) set of biLipschitzy : A C R — X, A compact
o P probability measure on I'(X)
o Vv € I'(X), iy Borel measure on X with 1, < Hllw

Definition
(P, {1y }~) is an Alberti representation of p if for each Borel set

BcX
u®) = [ B

Batel2 Cheeger MDS <= 3 “collection” of AR



Alberti representations

o By Fubini’s theorem there exists n independent Alberti
representations of Lebesgue measure

o Forf : R" — R Lipschitz and v curve (from AR), f o 7y is
Lipschitz therefore differentiable a.e. (Lebesgue)

o By combining such derivatives from each AR one prove
that partial derivatives exists a.e.

o Partial derivatives form a derivative a.e.

Bate 12 Let ;s be a Radon measure on (R, | - |), n = 1,2. Every
Lipschitz function is differentiable p—a.e. <= p < 2"



Derivations

Definition
Weaver 99 A bounded linear operator

§ : Lip,(X) — L™(X, i)

is called a (metric) derivation if it satisfies
o product rule: 6(fg) = f 6g + g6f Vf,g € Lip™(X);
o weak-star continuity: if f; = f in Lip™(X) = of; = of in Ly
T (X, u) | space of derivations with respect to x on X.

We call a set {§;}_, linearly dependent in Y (X, 1) if there exist
{)\i}é‘:l in L>°(X, u), not all zero, so that

Ao+ -+ MO = 0 rankk.

Gong 12 (X, d, 1) admits a non-trivial basis of derivations <=
Cheeger MDS



Gong 13 Let p be a Radon measure on (R”, | - |). Then

T (X, 1) has rank-n <= p < Z". Moreover, derivations with
respect to p are linear combinations of the differential operators
{0/0x;} | with scalars in L*°(R", p).

D-C, Gong, Jaramillo 13 a.s Sierpifiski fractals are
differentiably trivial with respect to the Euclidean metric.



So...

| p dodsling |
Pﬂ.-::ico => L'\P—QA'.P

\ul Cheeger MDS

c-PL +> n

AR measure

[}

Basis of dervakung
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Isoperimetric inequality

The isoperimetric problem is to determine a plane figure of the
largest possible area whose boundary has a specified length.

Let us consider the inequality:

y
(/ upld) " < c/ Vuldy,
Q Q

where g > 1, Q C R" open, p is a measure and u € C°(€2).

Federer-Fleming, Mazya 1960
The inequality is satisfied with g > 1 if and only if

(n())1 < CH" 1 (09),

for each open and bounded domain €2 with smooth boundary.



