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Zero order calculus

(X, d, µ) metric measure space, µ Borel regular measure

Coifmann-Weiss 70’ Spaces of homogeneous type.

Definition
µ is doubling if ∃C > 0 constant such that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞ ∀ x ∈ X, r > 0.

X complete + µ doubling =⇒ X proper

Lebesgue points
Vitali Coverings
Maximal operator...
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Examples

(Rn, | · |,L n) C = 2n

(C, | · |,H
log2
log3 )

([0, 1], |x− y|1/2,H 2)

f (x) = x |f (x)− f (y)|
|x− y|1/2 = |x− y|1/2 y→x−→ 0

A curve in X is a continuous mapping γ : [a, b]→ X.
A rectifiable curve is a curve with finite length.



First order analysis

Rademacher Theorem Let f : Rn −→ R be a Lipschitz function.
Then f is differentiable L n-a.e. x ∈ Rn.

µ << L n OK
µ = δx0  (R, | · |, µ)

µ = length of a (lipschitz) curve (R2, | · |, µ)

Stepanov Theorem f : Rn −→ R is differentiable L n-a.e. in S(f ),

S(f ) :=
{

x ∈ Rn : Lip f (x) := lim sup
y→x
y6=x

|f (x)− f (y)|
|x− y|

<∞
}
.
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First order analysis on metric spaces

••• 

"  

F'F e..'-E.NT\ Aate 
TutE. 

Cheejet' 

MMS \Al, T+i 

&t)u N'D'Et) !.ElOtAJ 

lbTENTiAl•;roitJc.A q9 
l:tlEQUAuTI ES 

• GRAP\iS- - ; 
• NON lUT\tt" H 

""' 

• G\<. HAPS 
Lip- CONl)\";ON • SUe...R..iEl'MNtJ' 

.c••+-", 03 

ALBe.Rn' UPItUi. t-JrA'Ti ONS .. S11lUC.'N  
{ NULl. A\berf\ I\"a¡ PreisS ? 

Bo.-4-.. 
, . 

o.JS ..........-.  e  
'1'\ "eI',,:i2  

H 

()CUIl vANiLE r0p,o;tfA 
' . - 00  

lIrtt-vi OCl\ I I C;rlAl> i  

r 
LS 01\ I 1)i1li 

\ca.u .. •. .. 



Lipschitz function spaces

(X, d) metric space

Definition
A function f : X −→ R is Lipschitz if there is a constant C > 0
such that

|f (x)− f (y)| ≤ C d(x, y) ∀x, y ∈ X.

? LIP(X) = {f : X −→ R : f is Lipschitz}
? LIP∞(X) = {f : X −→ R : f is Lipschitz and bounded}

‖f‖LIP∞ = ‖f‖∞ + LIP(f )
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Pointwise Lipschitz function spaces

Definition
Given a function f : X→ R the pointwise Lipschitz constant of
f at x ∈ X is defined as

Lip f (x) = lim sup
y→x
y6=x

|f (x)− f (y)|
d(x, y)

.

Example
If f ∈ C1(Ω), Ω

op
⊂ Rn (or of a Riemannian manifold), then

Lip f (x) = |∇f (x)| ∀x ∈ Ω.
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Classical Poincaré inequality
One way to view the Fundamental Theorem of Calculus is:

infinitesimal data local control

This principle can apply in very general situation in the form of
a Poincaré inequality:

∃C = C(n) > 0: ∀B ≡ B(x, r) ⊂ Rn ∀f ∈W1,p(Rn)(1 ≤ p <∞)∫
B
|f − fB|dL n ≤ C(n) r

(∫
B
|∇f |pdL n

)1/p

Notation: ∫
B

f dL n = fB =
1

L n(B)

∫
B

f dL n

Applications: Harmonic Analysis and PDEs
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Poincaré inequalities in metric measure spaces
(X, d, µ) metric measure space

∫
B
|f − fB|dL n ≤ C(n) r

(∫
B
|∇f |p︸ ︷︷ ︸

?

dL n
)1/p

Proof.∫
B
|f − fB|dL n ≤

∫
B

∫
B
|f (x)− f (y)|dL n(y)dL n(x)

FTC : f (x)− f (y) =

∫ 1

0
〈∇f (ty + (1− t)x), (y− x)〉dt

|f (x)− f (y)| ≤
∫

[x,y]
|∇f |

. . .
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Poincaré inequalities in metric measure spaces

Definition
Heinonen-Koskela 98

A non-negative Borel function g on X is an upper gradient for
f : X→ R ∪ {±∞} if

|f (x)− f (y)| ≤
∫
γ

g,

∀x, y ∈ X and every rectifiable curve γxy.

Examples

If there are no rectifiable curves in X then g ≡ 0 is an upper
gradient of every function.
If f ∈ LIP(X) then g ≡ LIP(f ) and g(x) = Lip f (x) are upper
gradients for f .
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Poincaré inequalities in metric measure spaces

Definition
Heinonen-Koskela 98
Let 1 ≤ p <∞. (X, d, µ) supports a weak p-Poincaré inequality
if there exist constants Cp > 0 and λ ≥ 1 such that for every
function f : X→ R and every upper gradient g of f , the pair
(f , g) satisfies∫

B(x,r)
|f − fB(x,r)| dµ ≤ Cp r

(∫
B(x,λr)

gpdµ
)1/p

∀B(x, r) ⊂ X.

Notation: ∫
B

f dµ = fB =
1

µ(B)

∫
B

f dµ



Examples

(Rn, | · |,L n)

Riemannian manifolds with non-negative Ricci curvature
Heisenberg group with its Carnot-Carathéodory metric
and Haar measure Subriemannian geometry
Boundaries of certain hyperbolic buildings: Bourdon-Pajot
spaces Geometric group theory
Laakso spaces, . . .

Cheeger 99 Keith 04

X complete and p-PI

µ doubling

}
=⇒ X admits a “differentiable structure”
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Geometric implications of p-Poincaré inequalities

X is connected

Semmes 98 p <∞

X complete p-PI

µ doubling

}
=⇒ X is quasiconvex

Definition
A metric space (X, d) is quasiconvex if there exists a constant
C ≥ 1 such that for each pair of points x, y ∈ X, there exists a
curve γ connecting x and y with

`(γ) ≤ Cd(x, y).
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02, Keith 03, Miranda 03, Korte 07, ....
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Sierpiński carpet

Q0 = [0, 1]2



A counterexample: Sierpiński carpet

Q1
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Sierpiński carpet

Q3



Sierpiński carpet
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Sierpiński carpet

…	  



Sierpiński carpet: S3 = (X, d, µ)

d = de|X

Equally distributing unit mass over Qn leads to a natural
probability doubling measure µ on S3.
( µ is comparable toHs, s =

log 8
log 3 ).



Counterexample

(S3, d, µ) does not admit a 1-PI

Let Tn be the vertical strip of width 3−n.
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Counterexample

T1



Counterexample

T2



Counterexample

T3



Counterexample∫
B(x,r)
|f − fB(x,r)| dµ ≤ C r

(∫
B(x,r)

gpdµ
)1/p

Tn

Define fn ∈ LIP(S3) such that
∫

S3

|fn − (fn)S3 |dµ > C but

∫
S3

lip(fn)dµ = 3n · µ(Tn) = 3n · 2n

8n → 0 (n→∞)



Counterexample

(S3, d, µ) does not admit any p-PI

Bourdon-Pajot 02 Let (X, d, µ) be a bounded metric measure
space with µ doubling and p-PI, and let f : X −→ I be a
surjective Lipschitz function from X onto an interval I ⊂ R.
Then, L 1

|I � f#µ. Here f#µ denotes the push-forward measure
of µ under f .

Proof.
Let f be the projection on the horizontal axis. It can be checked
that f#µ⊥L 1.

Question Higher dimensions?



Generalized Sierpinski carpets: Sa

a = (a−1
1 , a−1

2 , . . .) ∈
{

1
3 ,

1
5 ,

1
7 , . . .

}N

For a =
(1

a
,

1
a
,

1
a
, . . .

)
a odd,

Sa does not admit any p−PI

Mackay, Tyson, Wildrick 13
(Sa, d, µ) supports a 1-PI if and only if a ∈ `1

(Sa, d, µ) supports a p-PI for some p > 1 if and only if a ∈ `2
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Which is the role of the exponent p?∫
B(x,r)
|f − fB(x,r)| dµ ≤ Cr

(∫
B(x,λr)

gpdµ
)1/p

Hölder inequality: p-PI=⇒q-PI for q ≥ p

Federer-Fleming, Mazýa 60 Miranda 03
(Rn) p = 1 ⇐⇒ Isoperimetric inequality

Example Example

X := {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ xm}

(X, | · |,L 2
|X) X has p−PI ⇐⇒

p > m + 1
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What happens when p→∞?

∫
B(x,r)
|f − fB(x,r)| dµ ≤ Cr

(∫
B(x,λr)

gpdµ
)1/p

Hölder inequality: p-PI=⇒q-PI for q ≥ p

Definition
(X, d, µ) supports a weak∞-Poincaré inequality if there exist
constants C > 0 and λ ≥ 1 such that for every function
f : X→ R and every upper gradient g of f , the pair (f , g)
satisfies ∫

B(x,r)
|f − fB(x,r)| dµ ≤ Cr‖g‖L∞(B(x,λr))

∀B(x, r) ⊂ X.
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X complete and∞-PI

µ doubling

}
=⇒X is quasiconvex

:

Sierpiński carpet

d = de|X µ = Hs, s =
log 8
log 3

(X, d) is quasiconvex
(X, d, µ) does not admit
any p-PI, 1 ≤ p ≤ ∞

And a differentiable structure?



Modulus of a family of curves

Definition
Let Γ ⊂ Υ = {non constant rectifiable curves of X} and
1 ≤ p ≤ ∞. For Γ ⊂ Υ, let F(Γ) be the family of all Borel
measurable functions ρ : X→ [0,∞] such that∫

γ
ρ ≥ 1 for all γ ∈ Γ.

Modp(Γ) =

 infρ∈F(Γ)

∫
X ρ

p dµ, if p <∞

infρ∈F(Γ) ‖ρ‖L∞ , if p =∞

If some property holds for all curves γ ∈ Υ\Γ, where
Modp Γ = 0, then we say that the property holds for p−a.e.
curve.

Remark
Modp is an outer measure



Lemma
Let Γ ⊂ Υ and 1 ≤ p ≤ ∞. The following conditions are equivalent:
(a) Modp Γ = 0.
(b) There exists a Borel function 0 ≤ ρ ∈ Lp(X) such that∫

γ ρ = +∞, for each γ ∈ Γ and ‖ρ‖L∞ = 0.

Examples
Rn,n ≥ 2



p-“thick” quasiconvexity

Definition
(X, d, µ) is a p-“thick” quasiconvex space if there exists C ≥ 1
such that ∀ x, y ∈ X, 0 < ε < 1

4 d(x, y),

Modp(Γ(B(x, ε),B(y, ε),C)) > 0,

where Γ(B(x, ε),B(y, ε),C) denotes the set of curves γp,q
connecting p ∈ B(x, ε) and q ∈ B(y, ε) with `(γp,q) ≤ Cd(p, q).



Geometric characterization: p =∞

D-C, Jaramillo, Shanmugalingam 11
Let (X, d, µ) be a complete metric space with µ doubling. Then,

X is∞-“thick” quasi-convex ⇐⇒ X admits∞-PI



Analytic characterization

D-C, Jaramillo, Shanmugalingam 11 Let (X, d, µ) be a
connected complete metric space supporting a doubling Borel
measure µ. Then

LIP∞(X) = N1,∞(X) with c.e.s. ⇐⇒ X admits∞-PI



Geometric implications of p-PI

X complete and p-PI

µ doubling

}
=⇒X is p-“thick” quasiconvex

Remarks

p-“thick” quasiconvex =⇒ quasiconvex
The characterization is no longer true for p <∞ :



A counterexample

µ =
∑

j χQj · µj doubling measure

X is p-thick quasi-convex 1 ≤ p ≤ ∞ =⇒∞-PI
X admits an∞-PI but does not admit any p-PI
(1 ≤ p <∞)



p−Poincaré inequalities

D-C, Shanmugalingam 13+n, n ∈ N Let (X, d, µ) be a connected
complete Ahlfors Q-regular space. Then the following
conditions are equivalent:
(1) X supports a p-Poincaré inequality for some p > Q.
(2) There are constants C > 0, τ > 1 such that every

u ∈ N1,p(X) is (1− Q
p )-Hölder continuous.

(3) There is a constant C > 0 such that whenever x0, y0 ∈ X,

Modp(Γx0,y0) ≥
C

d(x0, y0)p−Q ,

where Γx0,y0 denotes the family of C-quasiconvex curves
connecting x0 to y0.



Persistence of p-PI under GH-limits

Cheeger 99
If {Xn, dn, µn}n with µn doubling measures supporting a p-PI
p <∞ (with constants uniformly bounded), and

{Xn, dn, µn}n
G−H−→ (X, d, µ), then (X, d, µ) has µ doubling and

supports a p-PI.

Corollary
The∞-PI is non-stable under measured Gromov-Hausdorff limits.



Not Self-improvement of∞-PI

Keith-Zhong 08 If X is a complete metric space equipped with a
doubling measure satisfying a p-Poincaré inequality for some
1 < p <∞, then there exists ε > 0 such that X supports a
q-Poincaré inequality for all q > p− ε.



Cheeger Analysis

Definition
A measurable differentiable structure on (X, d, µ) is a countable
collection {(Xα, xα)}α of measurable sets Xα ⊂ X and Lipschitz
coordinates xα = (x1

α, . . . , x
N(α)
α ) : X −→ RN(α) such that

(i) µ
(

X \
⋃
α Xα

)
= 0;

(ii) ∃N ≥ 0 (dimension) such that N(α) ≤ N for each (Xα, xα);
(iii) If f : X→ R is Lipschitz, then for each (Xα, xα) there exists

a unique (up to a set of zero measure) map
dαf ∈ L∞(Xα;RN(α)) such that

lim
y→x
y6=x

|f (y)− f (x)− dαf (x) · (xα(y)− xα(x))|
d(y, x)

= 0

for µ-a.e. x ∈ Xα.



Cheeger Analysis

Cheeger differential of f (linear operator)

f 7→ df :=

∞∑
α=1

χXα · dαf |df (x)| = Lip f (x)

By Rademacher Euclidean spaces: single coordinate chart
(Rn, x), with x = (x1, · · · , xn) coordinate functions, df = ∇f
By Pansu 89: Carnot groups R3 = {(x, y, z)}with
Carnot-Carathèodory metric, x = (x1, x2), df = ∇Hf .



Measured differentiable structures

X complete, µ doubling

Cheeger 99

X supports p-PI

1 ≤ p <∞

}
=⇒ X admits a “differentiable structure”

Where is the p?

Keith 04

X satisfies Lip-lip =⇒ X admits a“differentiable structure”



Lip-lip condition
“The infinitesimal behaviour at a generic point is essentially independent of
the scales used for the blow-up at that point”

Definition

X satisfies Lip-lip if ∃C > 0 such that ∀f ∈ LIP(X),

Lip f (x) ≤ C lip f (x) µ-a.e.x

Here,
Lip f (x) := lim sup

r→0
sup

0<d(y,x)<r

|f (y)− f (x)|
r

,

and
lip f (x) := lim inf

r→0
sup

0<d(y,x)<r

|f (y)− f (x)|
r

.

Remark
If µ ∼ λ =⇒ (X, d, µ) has Lip-lip iff (X, d, λ) has Lip-lip



Lip-lip condition
Keith 04

X complete and p-PI

µ doubling

}
=⇒ X has the Lip-lip condition

:

Proof.
For µ-a.e.x,

1
C

Lip f (x) ≤ lim sup
r→0

1
r

∫
B(x,r)
|f − fB(x,r)| dµ

≤ L lim sup
r→0

(∫
B(x,r)

lip f (x)pdµ
) 1

p
= L lip f (x)



Lip-lip condition
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Lip-lip condition
Keith 04

X complete and p-PI

µ doubling

}
=⇒ X has the Lip-lip condition

:
Proof.
For µ-a.e.x,

1
C

Lip f (x) ≤ lim sup
r→0

1
r

∫
B(x,r)
|f − fB(x,r)| dµ

≤ L lim sup
r→0

(∫
B(x,r)

lip f (x)pdµ
) 1

p
= L lip f (x)



And∞−PI?

X complete and∞-PI

µ doubling

}
NO a.s.
=⇒ X has the Lip-lip condition

Bate 12, Gong 12

X satisfies σ−Lip-lip

µ pointwise doubling

}
⇐⇒ X admits a Cheeger MDS



Alberti representations

Γ(X) set of biLipschitz γ : A ⊂ R→ X, A compact
P probability measure on Γ(X)

∀γ ∈ Γ(X), µγ Borel measure on X with µγ � H1
|γ

Definition
(P, {µγ}γ) is an Alberti representation of µ if for each Borel set
B ⊂ X

µ(B) =

∫
Γ(X)

µγ(B)dP

Bate12 Cheeger MDS ⇐⇒ ∃ “collection” of AR



Alberti representations

By Fubini’s theorem there exists n independent Alberti
representations of Lebesgue measure
For f : Rn → R Lipschitz and γ curve (from AR), f ◦ γ is
Lipschitz therefore differentiable a.e. (Lebesgue)
By combining such derivatives from each AR one prove
that partial derivatives exists a.e.
Partial derivatives form a derivative a.e.

Bate 12 Let µ be a Radon measure on (Rn, | · |), n = 1, 2. Every
Lipschitz function is differentiable µ−a.e. ⇐⇒ µ� L n.



Derivations

Definition
Weaver 99 A bounded linear operator

δ : Lipb(X)→ L∞(X, µ)

is called a (metric) derivation if it satisfies
product rule: δ(fg) = f δg + gδf ∀f , g ∈ Lip∞(X);

weak-star continuity: if fi
∗
⇀ f in Lip∞(X)⇒ δfi

∗
⇀ δf in L∞µ

Υ(X, µ) space of derivations with respect to µ on X.

We call a set {δi}k
i=1 linearly dependent in Υ(X, µ) if there exist

{λi}k
i=1 in L∞(X, µ), not all zero, so that

λ1δ1 + · · ·+ λkδk = 0 rank k.

Gong 12 (X, d, µ) admits a non-trivial basis of derivations ⇐⇒
Cheeger MDS



Gong 13 Let µ be a Radon measure on (Rn, | · |). Then
Υ(X, µ) has rank-n ⇐⇒ µ� L n. Moreover, derivations with
respect to µ are linear combinations of the differential operators
{∂/∂xi}n

i=1 with scalars in L∞(Rn, µ).

D-C, Gong, Jaramillo 13 a.s Sierpiński fractals are
differentiably trivial with respect to the Euclidean metric.



So...



Merci pour votre attention!



Isoperimetric inequality

The isoperimetric problem is to determine a plane figure of the
largest possible area whose boundary has a specified length.

Let us consider the inequality:(∫
Ω
|u|qdµ

)1/q
≤ C

∫
Ω
|∇u|dµ,

where q ≥ 1, Ω ⊂ Rn open, µ is a measure and u ∈ C∞0 (Ω).
Federer-Fleming, Mazýa 1960
The inequality is satisfied with q ≥ 1 if and only if

(µ(Ω))
1
q ≤ CH n−1(∂Ω),

for each open and bounded domain Ω with smooth boundary.
Volver


