Upper triangular forms for some classes of infinite dimensional operators

Ken Dykema,¹ Fedor Sukochev,² Dmitriy Zanin²

¹Department of Mathematics Texas A&M University College Station, TX, USA.

²School of Mathematics and Statistics University of New South Wales Kensington, NSW, Australia

June 20, 2014

Schur's upper triangular forms of matrices

Thm. (Schur)

Every element of $T \in M_n(\mathbb{C})$ is unitarily conjugate to an upper triangular matrix, i.e. there is some unitary matrix U such that

$$U^{-1}TU = \begin{pmatrix} \lambda_1 & * & * & \cdots & * \\ 0 & \lambda_2 & * & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & * \\ \vdots & 0 & \lambda_{n-1} & * \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{pmatrix},$$

where $\lambda_1,\ldots,\lambda_n$ are the eigenvalues of T listed according to algebraic multiplicity.

• If T is a normal matrix, then Schur's decomposition is the spectral decomposition of T.

Sukochev (UNSW)

Relation to invariant subspace problem

- Schur decomposition for operators is related to fundamental invariant subspace problems in operator theory and operator algebras.
- If {e_j}ⁿ_{j=1} is an orthonormal basis for Cⁿ and P_k, 1 ≤ k ≤ n is the orthogonal projection onto the subspace spanned by {e₁, e₂,..., e_k}, then a matrix T ∈ M_n(C) is upper-triangular with respect to this basis if and only if T leaves invariant each of the subspaces P_k(Cⁿ), 1 ≤ k ≤ n.
- Equivalently, $P_kTP_k = TP_k$ for every P_k in the nest of selfadjoint projections $0 = P_0 < P_1 < \ldots < P_n = 1$
- or, T belongs to the associated nest algebra, that is to $\mathcal{A} := \{A \in M_n(\mathbb{C}) : (1 P_k)AP_k = 0; k = 1, \dots, n\}.$
- Thus, Schur decomposition involves an appropriate notion of upper triangular operators and operators that have sufficiently many suitable invariant subspaces.

Important Corollaries of Schur's Theorem

• The Schur decomposition of the matrix T allows one to write $T={\cal N}+{\cal Q}$ where

$$N = \sum_{k=1}^{n} (P_k - P_{k-1})T(P_k - P_{k-1})$$

is a normal matrix (that is, a diagonal matrix in some basis) with the same spectrum as T.

- Observe that N is the conditional expectation $\operatorname{Exp}_{\mathcal{D}}(T)$ onto the algebra \mathcal{D} generated by $\{P_k\}_{k=1}^n$.
- The operator Q = T N is nilpotent (i.e. $Q^n = 0$ for some $n \in \mathbb{N}$).
- From the Schur decomposition one easily obtains that the trace of an arbitrary matrix is equal to the sum of its eigenvalues.

How can Schur's decomposition be generalized to operators?

- Projection P is said to be T-invariant if PTP = TP.
- An analogue of Schur's decomposition in the setting of an operator algebra \mathcal{M} (typically, a von Neumann algebra) can be stated in terms of invariant projections:

Problem 1

We look for a decomposition T = N + Q, where N is normal and belongs to the algebra generated by some nest of T-invariant projections and where Q is upper triangular with respect to this nest of projections and is, in some sense, spectrally negligible.

- This version would require that T has (many) invariant subspaces.
- This is not a problem when T is a matrix
- Whether every bounded operator T on a separable (infinite-dimensional) Hilbert space H has a nontrivial invariant subspace is not known and is called the Invariant Subspace Problem.

• The existence of a nontrivial invariant subspace for a compact operator allowed Ringrose in 1962 [6] to establish a Schur decomposition for compact operators.

Theorem (Ringrose)

For a compact operator T there is a maximal nest of T-invariant projections P_{λ} , $\lambda \in [0, 1]$ and T = N + Q, where * N is a normal operator and belongs to the algebra generated by this nest * Q is upper triangular with respect to this nest and which is a quasinilpotent (spec(Q) = {0}) compact operator.

- Observe that N has the same spectrum (and multiplicities) as T.
- Compact operators have a discrete spectrum composed of eigenvalues that can be listed and naturally associated with invariant subspaces.
- The task becomes much harder for a non-compact operator whose spectrum is generally a closed subset of \mathbb{C} .

- In 1986 Lawrence G. Brown, made a pivotal contribution to operator theory by introducing his spectral distribution measure (Brown measure) associated to an operator in a finite von Neumann algebra.
- In general, the support of the Brown measure of an operator T is a subset of the spectrum of T.
- we think of Brown measure as a sort of spectral distribution measure for *T*.
- If $T \in M_n(\mathbb{C})$ and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues (listed according to algebraic multiplicity), then it's Brown measure ν_T is given by $\nu_T = \frac{1}{n} (\delta_{\lambda_1} + \cdots + \delta_{\lambda_n}).$
- Let \mathcal{M} be a finite von Neumann algebra with normal faithful tracial state τ . If $N \in \mathcal{M}$ is normal operator (i.e., $N^*N = NN^*$), then $\nu_N = \tau \circ E_N$, where E_N is a spectral measure of the operator N.

Brown measure in matrix algebra

• If $A \in M_n(\mathbb{C})$ and if $\lambda_1, \ldots, \lambda_n$ are its eigenvalues, then

$$\log(\det(|A - \lambda|)) = \sum_{k=1}^{n} \log(|\lambda - \lambda_k|).$$

• It is a standard fact that applying the Laplacian $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, $\lambda = x + iy$ and dividing by 2π , we have

$$\frac{1}{2\pi}\nabla^2 \Big(\lambda \to \log(\det(|A - \lambda|))\Big) = \sum_{k=1}^n \delta_{\lambda_k}$$

• Thus, if $f(\lambda) = \frac{1}{n} \log(\det(|A - \lambda|))$, in case of matrices the Brown measure can be defined by

$$\nu_A = \frac{1}{n} \frac{1}{2\pi} \nabla^2 \Big(\lambda \to \log(\det(|A - \lambda|)) \Big) = \frac{1}{2\pi} \nabla^2 f.$$

• To define the Brown measure in general we recall the notion of Fuglede-Kadison determinant.

Sukochev (UNSW)

Fuglede-Kadison determinant

- Let *M* be a finite von Neumann algebra with normal faithful tracial state *τ*.
- \bullet Consider the mapping $\Delta:\mathcal{M}\to\mathbb{R}_+$ defined by the setting

$$\Delta(T) = \exp(\tau(\log(|T|))), \quad T \in \mathcal{M}$$

and $\Delta(T)=0$ when $\log(|T|)$ is not a trace class operator.

• Fuglede and Kadison proved that

$$\Delta(ST) = \Delta(S)\Delta(T), \quad S, T \in \mathcal{M}.$$

• If $(\mathcal{M}, \tau) = (M_n(\mathbb{C}), \frac{1}{n} \mathrm{Tr})$, then $\Delta(A) = (|\det(A)|)^{1/n}$ for every $A \in \mathcal{M}$, and therefore

$$\log \Delta(A - \lambda) = \frac{1}{n} \log(\det(|A - \lambda|)).$$

Let ${\mathcal M}$ be a finite von Neumann algebra with normal faithful tracial state $\tau.$

Definition of Brown measure

The Brown measure ν_T of $T \in \mathcal{M}$ is a Borel probability measure on \mathbb{C} ;

• $f(\lambda) = \log \Delta(T - \lambda)$ is subharmonic and

$$\nu_T = \frac{1}{2\pi} \nabla^2 f$$

in the sense of distributions.

$$\log(\Delta(T-\lambda)) = \int_{\mathbb{C}} \log |z-\lambda| \, d\nu_T(z), \quad \lambda \in \mathbb{C}$$

• In fact, $\operatorname{supp}(\nu_T) \subseteq \operatorname{spec}(T)$ with equality in some cases.

Haagerup–Schultz invariant projections

- A tremendous advance in construction invariant subspaces was made recently by Uffe Haagerup and Hanne Schultz.
- Using free probability, they have constructed invariant subspaces that split Brown's spectral distribution measure.

Theorem 1 (Haagerup–Schultz) [5]

Let \mathcal{M} be a finite von Neumann algebra with faithful tracial state τ . For every operator $T \in \mathcal{M}$, there is a family $\{p_B\}_{B \subset \mathbb{C}}$ of T-invariant projections indexed by Borel subsets of \mathbb{C} such that

•
$$\tau(p_B) = \nu_T(B)$$

- if $\nu_T(B) > 0$, then the Brown measure of Tp_B (in the algebra $p_B \mathcal{M} p_B$) is supported in B.
- if $\nu_T(B) < 1$, then the Brown measure of $(1 p_B)T$ (in the algebra $(1 p_B)\mathcal{M}(1 p_B)$) is supported in $\mathbb{C}\backslash B$.

• The projection p_B is called the Haagerup-Schultz projection.

s.o.t.-quasinilpotent operators

- Now we are ready to explain in what sense the operator Q in Problem 1 should be spectrally negligible.
- To keep the analogy of our result with the results of Schur and Ringrose, the operator Q should have Brown measure ν_Q supported on $\{0\}$.
- Haagerup and Schultz proved that Brown measure ν_Q supported on $\{0\}$ if and only if $\lim_{n\to\infty} |Q^n|^{1/n} = 0$ in the strong operator topology.

Definition s.o.t.-quasinilpotent

 $Q \in \mathcal{M}$ is s.o.t.-quasinilpotent if any of the following equivalent conditions hold:

(i)
$$\nu_Q = \delta_0$$

(ii) $\lim_{n\to\infty} |Q^n|^{1/n} = 0$ in the strong operator topology.

Definition quasinilpotent

 $Q \in B(H)$ is *quasinilpotent* if any of the following equivalent conditions hold:

(i) spec(Q) = {0} (ii) $\lim_{n\to\infty} |Q^n|^{1/n} = 0$ in the uniform norm topology.

- Every quasinilpotent operator is clearly s.o.t.-quasinilpotent.
- There exists s.o.t.-quasinilpotent operator Q with $\operatorname{spec}(Q)=\{z\in\mathbb{C}:|z|\leq 1\}.$

A Ringrose-type theorem on upper triangular forms in finite von Neumann algebras

Haagerup and Schultz's result allowed us in 2013 to prove the following result.

Main Theorem (Dykema, Sukochev, Zanin)[2]

Let \mathcal{M} be a finite von Neumann algebra \mathcal{M} equipped with a faithful tracial state τ . For every $T \in \mathcal{M}$, there exists a commutative von Neumann subalgebra \mathcal{D} such that

• The conditional expectation $N = \operatorname{Exp}_{\mathcal{D}}(T)$ onto \mathcal{D} is normal.

•
$$\nu_N = \nu_T$$
.

• Q = T - N is s.o.t.-quasinilpotent.

Why not a full analogue of Ringrose's theorem? The von Neumann subalgebra \mathcal{D} is generated by the nest of T-invariant projections, which is not necessarily maximal. However, if Brown measure of $\operatorname{spec}(T)$ does not have a discrete component, then this nest is maximal.

Sukochev (UNSW)

- Let $\rho:[0,1] \to (a \text{ disk containing } \operatorname{spec}(T))$ be Peano curve, i.e. the continuous function from the unit interval to the unit square.
- For every $t \in [0,1]$, let $q_t := p_{\rho([0,t])}$ be the Haagerup-Schultz projection constructed in Theorem 1.
- \mathcal{D} is the von Neumann algebra generated by $\{q_t\}_{t\in[0,1]}$.
- Similarly to the matrix case we set $N := \operatorname{Exp}_{\mathcal{D}}(T)$.
- It is immediate that N is a normal operator
- We prove that the operator Q = T N is s.o.t.-quasinilpotent (this is the hard part)
- and that $\nu_N = \nu_T$.

- Suppose that Main Theorem holds with quasinilpotent Q instead of s.o.t.-quasinilpotent.
- Take T to be an arbitrary s.o.t.-quasinilpotent.
- By the assumption, we have T = Q + N with quasinilpotent Q and $\nu_N = \nu_T = \delta_0$.
- Since N is normal and $\nu_N = \delta_0$, it follows that N = 0. Indeed, recalling $\nu_N = \tau \circ E_N = \delta_0$, for every Borel subset $B \subseteq \mathbb{C}$, we have

$$E_N(B) = \begin{cases} 0, & 0 \notin B \\ I, & 0 \in B \end{cases},$$

where I is the identity operator. Hence, N = 0.

• Thus, T = Q, i.e. any s.o.t.-quasinilpotent operator is quasinilpotent operator, that is not true in general.

• The following result shows the stability of decomposition in [2] under holomorphic functional calculus.

Thm. (Dykema, Sukochev, Zanin)[3]

For $T \in \mathcal{M}$, let T = N + Q be the upper triangular form from the previous result. Let h be a holomorphic function defined on a neighborhood of spec(T). Then $h(T) = h(N) + Q_h$, where Q_h is s.o.t.-quasinilpotent, h(N) is normal and $\nu_{h(T)} = \nu_{h(N)}$.

• There also exists a multiplicative version of holomorphic calculus.

Thm. (Dykema, Sukochev, Zanin)[3]

Let $T \in \mathcal{M}$ and let h be holomorphic function such that $0 \notin \operatorname{supp}(\nu_{h(T)})$. We have $h(T) = h(N)(I + Q'_h)$, where Q'_h is s.o.t.-quasinilpotent.

Unbounded operators

- Let \mathcal{M} be a finite von Neumann algebra \mathcal{M} equipped with a faithful tracial state τ .
- Closed densely defined operator T is said to be affiliated with \mathcal{M} if it commutes with every operator in the commutant \mathcal{M}' of \mathcal{M} .
- The collection of all affiliated with \mathcal{M} operators is denoted by $S(\mathcal{M}, \tau)$.
- The notions of the distribution function n_T , $T = T^*$ and the singular value function $\mu(T)$, $T \in S(\mathcal{M}, \tau)$ are defined as follows

$$n_T(t) := au(E_T(t,\infty)), \ t \in \mathbb{R} \ \ \mu(t;T) := \inf\{s : n_{|T|}(s) \le t\}, \ \ t \ge 0,$$

where $E_T(t,\infty)$ is the spectral projection of the self-adjoint operator T corresponding to the interval (t,∞) .

- Define $\mathcal{L}^1 := \{T \in S(\mathcal{M}, \tau) : \mu(T) \in L^1(0, \infty)\},\$
- The space \mathcal{L}^1 is a linear subspace of $S(\mathcal{M}, \tau)$ and the functional $T \longmapsto \|T\|_1 := \tau(|T|), T \in \mathcal{L}^1$ is a Banach norm.

- We prove the decomposition result for a large class of unbounded operators affiliated with a finite von Neumann algebra (*M*, *τ*).
- Note that the Brown measure plays an essential role in the solution of Problem 1 for bounded operators.
- Recall that the construction of Brown measure is based on the notion of Fuglede-Kadison determinant $\Delta(T) = \exp(\tau(\log(|T|)))$, $T \in \mathcal{M}$, which is well defined for bounded operators.
- Haagerup and Schultz [4] constructed the Fuglede-Kadison determinant and Brown measure for unbounded operators T ∈ S (M, τ) with an additional assumption log(|T|)₊ ∈ L₁, where log(|T|) is defined due to functional calculus and log(|T|)₊ is a positive part of log(|T|).

Theorem 2

Let $\log(|T|)_+ \in \mathcal{L}_1$. There exist operators N and Q such that

- T = N + Q
- N is normal and $\nu_N = \nu_T$
- Q is s.o.t.-quasinilpotent.
- $\log(|N|)_+ \in \mathcal{L}_1$ and $\log(|Q|)_+ \in \mathcal{L}_1$.

There are two key obstacles in comparison with the bounded case.

- There is no construction of Haagerup-Schultz projections for unbounded operators.
- Conditional expectation $\operatorname{Exp}_{\mathcal{D}}(T)$ is not defined when $T \notin \mathcal{L}_1$.

Brown's version of Lidskii formula

A deep result due to Lidskii allows us to compute a trace of a trace class operator $T \in B(H)$ in terms of eigenvalues $\lambda(k,T), k \ge 0$.

Lidskii theorem

If $T \in B(H)$ is trace class operator, then

$$\operatorname{Tr}(T) = \sum_{k=0}^{\infty} \lambda(k, T),$$

In a finite von Neumann algebra \mathcal{M} with tracial state τ , Brown proved the following analogue of Lidskii result in terms of the Brown measure.

Brown's theorem [1]

If $T \in \mathcal{M}$, then

$$\tau(T) = \int_{\mathbb{C}} z \, d\nu_T(z).$$

Sukochev (UNSW)

Definition

Let T, S be such that $\log_+(|T|), \log_+(|S|) \in \mathcal{L}_1(\mathcal{M}, \tau)$. We say that S is logarithmically submajorized by T (written $S \prec \prec_{\log}(T)$) if

$$\int_0^t \log(\mu(s,S)) ds \le \int_0^t \log(\mu(s,T)) ds, \quad t>0$$

Weyl (1949) proved that the following estimate

Theorem

If T is a compact operator, then

$$\prod_{k=0}^{n} |\lambda(k,A)| \le \prod_{k=0}^{n} \mu(k,A), \quad n \ge 0.$$

A similar estimate holds in finite von Neumann algebras.

Theorem

Let T = N + Q as in Theorem 2. We have $N \prec \prec_{\log} (T)$.

Spectrality of traces

The following Lidskii formula was proved in [7].

Theorem

Let \mathcal{I} be an ideal in B(H) which is closed with respect to the logarithmic submajorization. Let $T \in \mathcal{I}$. Then for every trace φ on \mathcal{I} , we have $\varphi(T) = \varphi(\lambda(T))$.

We prove Brown-Lidskii formula for traces on operator bimodules.

Theorem (work in progress)

Let \mathcal{I} be an operator bimodule on a finite factor \mathcal{M} which is closed with respect to the logarithmic submajorization. Let $T \in \mathcal{I}$. Then for every trace φ on \mathcal{I} , we have $\varphi(T) = \varphi(N)$, where N is ANY normal operator such that $\nu_N = \nu_T$.

In other words, the equality $\varphi(T)=\varphi(N)$ can be written as

$$\varphi(T) = \varphi\Big(\int_{\mathbb{C}} z \, dE_N(z)\Big).$$

	-	-
=		

- Brown L. *Lidskii's theorem in the type II case*. Geometric methods in operator algebras (Kyoto, 1983), 1–35, Pitman Res. Notes Math. Ser., **123**, Longman Sci. Tech., Harlow, 1986.
- Dykema K., Sukochev F., Zanin D. A decomposition theorem in II₁ factors. http://dx.doi.org/10.1515/crelle-2013-0084
- Dykema K., Sukochev F., Zanin D. Holomorphic functional calculus on upper triangular forms in finite von Neumann algebras
- Haagerup U., Schultz H. Brown measures of unbounded operators affiliated with a finite von Neumann algebra. Math. Scand. 100 (2007), no. 2, 209–263.
- Haagerup U., Schultz H. Invariant subspaces for operators in a general II₁-factor. Publ. Math. Inst. Hautes Etudes Sci. No. **109** (2009), 19–111.
 - Ringrose J. Super-diagonal forms for compact linear operators. Proc. London Math. Soc. (3) 12 1962 367-384.
 - Sukochev F., Zanin D. Which traces are spectral? Adv. Math. 252 (2014), 406-428.