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Schur’s upper triangular forms of matrices

Thm. (Schur)

Every element of T ∈Mn(C) is unitarily conjugate to an upper triangular
matrix, i.e. there is some unitary matrix U such that

U−1TU =



λ1 ∗ ∗ · · · ∗

0 λ2 ∗ . . .
...

...
. . .

. . .
. . . ∗

... 0 λn−1 ∗
0 . . . . . . 0 λn


,

where λ1, . . . , λn are the eigenvalues of T listed according to algebraic
multiplicity.

If T is a normal matrix, then Schur’s decomposition is the spectral
decomposition of T .

Sukochev (UNSW) Upper triangular forms June 20, 2014 2 / 25



Relation to invariant subspace problem

Schur decomposition for operators is related to fundamental invariant
subspace problems in operator theory and operator algebras.

If {ej}nj=1 is an orthonormal basis for Cn and Pk, 1 ≤ k ≤ n is the
orthogonal projection onto the subspace spanned by {e1, e2, . . . , ek},
then a matrix T ∈Mn(C) is upper-triangular with respect to this
basis if and only if T leaves invariant each of the subspaces Pk(Cn),
1 ≤ k ≤ n.
Equivalently, PkTPk = TPk for every Pk in the nest of selfadjoint
projections 0 = P0 < P1 < . . . < Pn = 1

or, T belongs to the associated nest algebra, that is to
A := {A ∈Mn(C) : (1− Pk)APk = 0; k = 1, . . . , n}.
Thus, Schur decomposition involves an appropriate notion of upper
triangular operators and operators that have sufficiently many
suitable invariant subspaces.
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Important Corollaries of Schur’s Theorem

The Schur decomposition of the matrix T allows one to write
T = N +Q where

N =

n∑
k=1

(Pk − Pk−1)T (Pk − Pk−1)

is a normal matrix (that is, a diagonal matrix in some basis) with the
same spectrum as T .

Observe that N is the conditional expectation ExpD(T ) onto the
algebra D generated by {Pk}nk=1.

The operator Q = T −N is nilpotent (i.e. Qn = 0 for some n ∈ N).

From the Schur decomposition one easily obtains that the trace of
an arbitrary matrix is equal to the sum of its eigenvalues.
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How can Schur’s decomposition be generalized to operators?

Projection P is said to be T -invariant if PTP = TP .

An analogue of Schur’s decomposition in the setting of an operator
algebra M (typically, a von Neumann algebra) can be stated in
terms of invariant projections:

Problem 1

We look for a decomposition T = N +Q, where N is normal and belongs
to the algebra generated by some nest of T -invariant projections and
where Q is upper triangular with respect to this nest of projections and is,
in some sense, spectrally negligible.

This version would require that T has (many) invariant subspaces.

This is not a problem when T is a matrix

Whether every bounded operator T on a separable
(infinite-dimensional) Hilbert space H has a nontrivial invariant
subspace is not known and is called the Invariant Subspace Problem.
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Ringrose Theorem

The existence of a nontrivial invariant subspace for a compact operator
allowed Ringrose in 1962 [6] to establish a Schur decomposition for
compact operators.

Theorem (Ringrose)

For a compact operator T there is a maximal nest of T -invariant projections Pλ,
λ ∈ [0, 1] and T = N +Q, where
? N is a normal operator and belongs to the algebra generated by this nest
? Q is upper triangular with respect to this nest and which is a quasinilpotent
(spec(Q) = {0}) compact operator.

Observe that N has the same spectrum (and multiplicities) as T .

Compact operators have a discrete spectrum composed of eigenvalues that
can be listed and naturally associated with invariant subspaces.

The task becomes much harder for a non-compact operator whose
spectrum is generally a closed subset of C.
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Brown measure

In 1986 Lawrence G. Brown, made a pivotal contribution to operator
theory by introducing his spectral distribution measure (Brown
measure) associated to an operator in a finite von Neumann algebra.

In general, the support of the Brown measure of an operator T is a
subset of the spectrum of T.

we think of Brown measure as a sort of spectral distribution measure
for T .

If T ∈Mn(C) and if λ1, . . . , λn are the eigenvalues (listed according
to algebraic multiplicity), then it’s Brown measure νT is given by
νT = 1

n(δλ1 + · · ·+ δλn).

Let M be a finite von Neumann algebra with normal faithful tracial
state τ. If N ∈M is normal operator (i.e., N∗N = NN∗), then
νN = τ ◦ EN , where EN is a spectral measure of the operator N .
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Brown measure in matrix algebra

If A ∈Mn(C) and if λ1, . . . , λn are its eigenvalues, then

log(det(|A− λ|)) =

n∑
k=1

log(|λ− λk|).

It is a standard fact that applying the Laplacian ∇2 = ∂2

∂x2
+ ∂2

∂y2
,

λ = x+ iy and dividing by 2π, we have

1

2π
∇2
(
λ→ log(det(|A− λ|))

)
=

n∑
k=1

δλk .

Thus, if f(λ) = 1
n log(det(|A− λ|)), in case of matrices the Brown

measure can be defined by

νA =
1

n

1

2π
∇2
(
λ→ log(det(|A− λ|))

)
=

1

2π
∇2f.

To define the Brown measure in general we recall the notion of
Fuglede-Kadison determinant.
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Fuglede-Kadison determinant

Let M be a finite von Neumann algebra with normal faithful tracial
state τ.

Consider the mapping ∆ :M→ R+ defined by the setting

∆(T ) = exp(τ(log(|T |))), T ∈M

and ∆(T ) = 0 when log(|T |) is not a trace class operator.

Fuglede and Kadison proved that

∆(ST ) = ∆(S)∆(T ), S, T ∈M.

If (M, τ) = (Mn(C), 1nTr), then ∆(A) = (|det(A)|)1/n for every
A ∈M, and therefore

log ∆(A− λ) =
1

n
log(det(|A− λ|)).
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Definition of Brown measure

Let M be a finite von Neumann algebra with normal faithful tracial
state τ.

Definition of Brown measure

The Brown measure νT of T ∈M is a Borel probability measure on C;

• f(λ) = log ∆(T − λ) is subharmonic and

νT =
1

2π
∇2f

in the sense of distributions.

•
log(∆(T − λ)) =

∫
C

log |z − λ| dνT (z), λ ∈ C

• In fact, supp(νT ) ⊆ spec(T ) with equality in some cases.
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Haagerup–Schultz invariant projections

A tremendous advance in construction invariant subspaces was made
recently by Uffe Haagerup and Hanne Schultz.

Using free probability, they have constructed invariant subspaces that
split Brown’s spectral distribution measure.

Theorem 1 (Haagerup–Schultz) [5]

Let M be a finite von Neumann algebra with faithful tracial state τ. For
every operator T ∈M, there is a family {pB}B⊂C of T -invariant
projections indexed by Borel subsets of C such that

• τ(pB) = νT (B)

• if νT (B) > 0, then the Brown measure of TpB (in the algebra pBMpB) is
supported in B.

• if νT (B) < 1, then the Brown measure of (1− pB)T (in the algebra
(1− pB)M(1− pB)) is supported in C\B.

The projection pB is called the Haagerup-Schultz projection.
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s.o.t.-quasinilpotent operators

Now we are ready to explain in what sense the operator Q in
Problem 1 should be spectrally negligible.

To keep the analogy of our result with the results of Schur and
Ringrose, the operator Q should have Brown measure νQ supported
on {0}.
Haagerup and Schultz proved that Brown measure νQ supported on
{0} if and only if limn→∞ |Qn|1/n = 0 in the strong operator
topology.

Definition s.o.t.-quasinilpotent

Q ∈M is s.o.t.-quasinilpotent if any of the following equivalent
conditions hold:

(i) νQ = δ0

(ii) limn→∞ |Qn|1/n = 0 in the strong operator topology.
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Compare with quasinilpotent operators

Definition quasinilpotent

Q ∈ B(H) is quasinilpotent if any of the following equivalent conditions
hold:

(i) spec(Q) = {0}
(ii) limn→∞ |Qn|1/n = 0 in the uniform norm topology.

Every quasinilpotent operator is clearly s.o.t.-quasinilpotent.

There exists s.o.t.-quasinilpotent operator Q with
spec(Q) = {z ∈ C : |z| ≤ 1}.
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A Ringrose-type theorem on upper triangular forms in
finite von Neumann algebras

Haagerup and Schultz’s result allowed us in 2013 to prove the following
result.

Main Theorem (Dykema, Sukochev, Zanin)[2]

Let M be a finite von Neumann algebra M equipped with a faithful
tracial state τ. For every T ∈M, there exists a commutative von
Neumann subalgebra D such that

• The conditional expectation N = ExpD(T ) onto D is normal.

• νN = νT .

• Q = T −N is s.o.t.-quasinilpotent.

Why not a full analogue of Ringrose’s theorem? The von Neumann
subalgebra D is generated by the nest of T -invariant projections, which is
not necessarily maximal. However, if Brown measure of spec(T ) does not
have a discrete component, then this nest is maximal.
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Construction of the algebra D

Let ρ : [0, 1]→
(
a disk containing spec(T )

)
be Peano curve, i.e. the

continuous function from the unit interval to the unit square.

For every t ∈ [0, 1], let qt := pρ([0,t]) be the Haagerup-Schultz
projection constructed in Theorem 1.

D is the von Neumann algebra generated by {qt}t∈[0,1].
Similarly to the matrix case we set N := ExpD(T ).

It is immediate that N is a normal operator

We prove that the operator Q = T −N is s.o.t.-quasinilpotent (this
is the hard part)

and that νN = νT .
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Why not quasinilpotent?

Suppose that Main Theorem holds with quasinilpotent Q instead of
s.o.t.-quasinilpotent.

Take T to be an arbitrary s.o.t.-quasinilpotent.

By the assumption, we have T = Q+N with quasinilpotent Q and
νN = νT = δ0.

Since N is normal and νN = δ0, it follows that N = 0.
Indeed, recalling νN = τ ◦ EN = δ0, for every Borel subset B ⊆ C,
we have

EN (B) =

{
0, 0 /∈ B
I, 0 ∈ B ,

where I is the identity operator. Hence, N = 0.

Thus, T = Q, i.e. any s.o.t.-quasinilpotent operator is quasinilpotent
operator, that is not true in general.
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Holomorphic functional calculus

The following result shows the stability of decomposition in [2] under
holomorphic functional calculus.

Thm. (Dykema, Sukochev, Zanin)[3]

For T ∈M, let T = N +Q be the upper triangular form from the
previous result. Let h be a holomorphic function defined on a
neighborhood of spec(T ). Then h(T ) = h(N) +Qh, where Qh is
s.o.t.-quasinilpotent, h(N) is normal and νh(T ) = νh(N).

There also exists a multiplicative version of holomorphic calculus.

Thm. (Dykema, Sukochev, Zanin)[3]

Let T ∈M and let h be holomorphic function such that 0 /∈ supp(νh(T )).
We have h(T ) = h(N)(I +Q′h), where Q′h is s.o.t.-quasinilpotent.
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Unbounded operators

Let M be a finite von Neumann algebra M equipped with a faithful
tracial state τ.

Closed densely defined operator T is said to be affiliated with M if it
commutes with every operator in the commutant M′ of M.

The collection of all affiliated with M operators is denoted by
S(M, τ).

The notions of the distribution function nT , T = T ∗ and the singular
value function µ(T ), T ∈ S (M, τ) are defined as follows

nT (t) := τ(ET (t,∞)), t ∈ R µ(t;T ) := inf{s : n|T |(s) ≤ t}, t ≥ 0,

where ET (t,∞) is the spectral projection of the self-adjoint operator
T corresponding to the interval (t,∞).

Define L1 := {T ∈ S(M, τ) : µ(T ) ∈ L1(0,∞)},
The space L1 is a linear subspace of S (M, τ) and the functional
T 7−→ ‖T‖1 := τ(|T |), T ∈ L1 is a Banach norm.

Sukochev (UNSW) Upper triangular forms June 20, 2014 18 / 25



An appropriate class of unbounded operators

We prove the decomposition result for a large class of unbounded
operators affiliated with a finite von Neumann algebra (M, τ).

Note that the Brown measure plays an essential role in the solution
of Problem 1 for bounded operators.

Recall that the construction of Brown measure is based on the
notion of Fuglede-Kadison determinant ∆(T ) = exp(τ(log(|T |))),
T ∈M, which is well defined for bounded operators.

Haagerup and Schultz [4] constructed the Fuglede-Kadison
determinant and Brown measure for unbounded operators
T ∈ S (M, τ) with an additional assumption log(|T |)+ ∈ L1, where
log(|T |) is defined due to functional calculus and log(|T |)+ is a
positive part of log(|T |).
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Main Theorem for unbounded operators (work in progress)

Theorem 2

Let log(|T |)+ ∈ L1. There exist operators N and Q such that

• T = N +Q

• N is normal and νN = νT

• Q is s.o.t.-quasinilpotent.

• log(|N |)+ ∈ L1 and log(|Q|)+ ∈ L1.

There are two key obstacles in comparison with the bounded case.

There is no construction of Haagerup-Schultz projections for
unbounded operators.

Conditional expectation ExpD(T ) is not defined when T /∈ L1.
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Brown’s version of Lidskii formula

A deep result due to Lidskii allows us to compute a trace of a trace class
operator T ∈ B(H) in terms of eigenvalues λ(k, T ), k ≥ 0.

Lidskii theorem

If T ∈ B(H) is trace class operator, then

Tr(T ) =

∞∑
k=0

λ(k, T ),

In a finite von Neumann algebra M with tracial state τ, Brown proved
the following analogue of Lidskii result in terms of the Brown measure.

Brown’s theorem [1]

If T ∈M, then

τ(T ) =

∫
C
z dνT (z).
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Logarithmic submajorization

Definition

Let T, S be such that log+(|T |), log+(|S|) ∈ L1(M, τ). We say that S is
logarithmically submajorized by T (written S ≺≺log (T )) if∫ t

0
log(µ(s, S))ds ≤

∫ t

0
log(µ(s, T ))ds, t > 0.
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Weyl estimates

Weyl (1949) proved that the following estimate

Theorem

If T is a compact operator, then

n∏
k=0

|λ(k,A)| ≤
n∏
k=0

µ(k,A), n ≥ 0.

A similar estimate holds in finite von Neumann algebras.

Theorem

Let T = N +Q as in Theorem 2. We have N ≺≺log (T ).
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Spectrality of traces

The following Lidskii formula was proved in [7].

Theorem

Let I be an ideal in B(H) which is closed with respect to the logarithmic
submajorization. Let T ∈ I. Then for every trace ϕ on I, we have
ϕ(T ) = ϕ(λ(T )).

We prove Brown-Lidskii formula for traces on operator bimodules.

Theorem (work in progress)

Let I be an operator bimodule on a finite factor M which is closed with
respect to the logarithmic submajorization. Let T ∈ I. Then for every
trace ϕ on I, we have ϕ(T ) = ϕ(N), where N is ANY normal operator
such that νN = νT .

In other words, the equality ϕ(T ) = ϕ(N) can be written as

ϕ(T ) = ϕ
(∫

C
z dEN (z)

)
.
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