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Objective : Adapt ideas from rough paths theory in a non-
commutative probability setting.

−→ To show the �exibility of the rough-paths machinery.

−→ To provide another perspective on non-commutative stochastic
calculus

(Reference : Biane-Speicher (PTRF 98'))
(Reference : Bozejko-Kümmerer-Speicher (Com. Math. Phys.
97')).
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Classical rough paths theory [Lyons (98)]

Consider a non-di�erentiable path

x : [0,T ]→ Rn,

with Hölder regularity γ ∈ (0, 1) (i.e., ‖xt − xs‖ ≤ c |t − s|γ).

Question : Given a smooth f : Rn → L(Rn,Rn), how can we de�ne∫
f (xt) dxt ?

We would like this de�nition to be su�ciently extensible to cover
di�erential equations

dyt = f (yt) dxt .
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Basics on classical rough paths theory Non-commutative probability theory and rough paths

Rough paths theory =⇒ Give a sense to∫
f (xt) dxt

when x : [0,T ]→ Rn is a γ-Hölder path with γ ∈ (0, 1).

Application : Pathwise approach to stochastic calculus.

• The construction of the integral depends on γ :

γ >
1

2
, γ ∈ (

1

3
,
1

2
] , γ ∈ (

1

4
,
1

3
] , . . .

• When γ ≤ 1

2
, additional assumptions on x .
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γ > 1/2 ('Young case')

Theorem (Young (1936))

If x is γ-Hölder and y is κ-Hölder with γ + κ > 1, then the

Riemann sum
∑

ti∈P[s,t]
yti (xti+1

− xti ) converges as the mesh of

the partition P[s,t] tends to 0. We de�ne∫ t

s

yu dxu := lim
|P[s,t]|→0

∑
ti∈P[s,t]

yti (xti+1
− xti ).

Application : x : [0,T ]→ Rn γ-Hölder with γ > 1/2.
f smooth ⇒ (t 7→ f (xt)) γ-Hölder ⇒

∫
f (xt) dxt Young integral.
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Basics on classical rough paths theory Non-commutative probability theory and rough paths

γ > 1/2 ('Young case')

Another way to see Young's result :∫ t

s

f (xu) dxu = f (xs) (xt − xs) +

∫ t

s

[f (xu)− f (xs)] dxu.

Main term :

f (xs) (xt − xs), with |f (xs) (xt − xs)| ≤ c |t − s|γ .

Residual term :∫ t

s

[f (xu)− f (xs)] dxu with |
∫ t

s

[f (xu)− f (xs)] dxu| ≤ c |t − s|2γ .

As 2γ > 1, 'disappears in Riemann sum'.
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Basics on classical rough paths theory Non-commutative probability theory and rough paths

If x ∈ Cγ with γ ≤ 1/2, we cannot guarantee the convergence of the
sum ∑

ti∈P[s,t]

f (xti ) (xti+1
− xti ).

=⇒ We try to 'correct' the Riemann sum :∑
ti∈P[s,t]

{
f (xti ) (xti+1

− xti ) + Cti ,ti+1

}
.

To �nd out a proper C , a few heuristic considerations. Suppose that
we can de�ne

∫ t

s
f (xu) dxu. Then...
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∫ t

s

f (xu) dxu

= f (xs) (xt − xs) +

∫ t

s

[f (xu)− f (xs)] dxu

= f (xs) (xt − xs) +

∫ t

s

∇f (xs)(xu − xs) dxu +

∫ t

s

ys,u dxu,

where |ys,u| = |f (xu)− f (xs)−∇f (xs)(xu − xs)| ≤ c |u − s|2γ .

|
∫ t

s
ys,u dxu| ≤ c |t − s|3γ . As 3γ > 1, 'disappears in Riemann sum'.

⇒ Main term :

f (xs) (xt − xs) +

∫ t

s

∇f (xs)(xu − xs) dxu.
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Basics on classical rough paths theory Non-commutative probability theory and rough paths

A natural de�nition : when γ ∈ (1
3
, 1
2

],∫ t

s

f (xu) dxu ” := ” lim
∑
tk

{
f (xtk ) (xtk+1

− xtk ) + Ctk ,tk+1

}
where

Cs,t :=

∫ t

s

∇f (xs)(xu − xs) dxu.

=⇒ to de�ne the integral when γ ∈ (1
3
, 1
2

], we need to assume the
a priori existence of the Lévy area

x
2,(i ,j)
s,t :=

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u

above x . Then everything works...

8 / 23
Rough-paths and non-commutative probability

N



Basics on classical rough paths theory Non-commutative probability theory and rough paths

A natural de�nition : when γ ∈ (1
3
, 1
2

],∫ t

s

f (xu) dxu ” := ” lim
∑
tk

{
f (xtk ) (xtk+1

− xtk ) + Ctk ,tk+1

}
where

Cs,t := ∂i fj(xs)

∫ t

s

(x
(i)
u − x

(i)
s ) dx

(j)
u .

=⇒ to de�ne the integral when γ ∈ (1
3
, 1
2

], we need to assume the
a priori existence of the Lévy area

x
2,(i ,j)
s,t :=

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u

above x . Then everything works...

8 / 23
Rough-paths and non-commutative probability

N



Basics on classical rough paths theory Non-commutative probability theory and rough paths

A natural de�nition : when γ ∈ (1
3
, 1
2

],∫ t

s

f (xu) dxu ” := ” lim
∑
tk

{
f (xtk ) (xtk+1

− xtk ) + Ctk ,tk+1

}
where

Cs,t := ∂i fj(xs)

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u .

=⇒ to de�ne the integral when γ ∈ (1
3
, 1
2

], we need to assume the
a priori existence of the Lévy area

x
2,(i ,j)
s,t :=

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u

above x . Then everything works...

8 / 23
Rough-paths and non-commutative probability

N



Basics on classical rough paths theory Non-commutative probability theory and rough paths

A natural de�nition : when γ ∈ (1
3
, 1
2

],∫ t

s

f (xu) dxu ” := ” lim
∑
tk

{
f (xtk ) (xtk+1

− xtk ) + Ctk ,tk+1

}
where

Cs,t := ∂i fj(xs)

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u .

=⇒ to de�ne the integral when γ ∈ (1
3
, 1
2

], we need to assume the
a priori existence of the Lévy area

x
2,(i ,j)
s,t :=

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u

above x . Then everything works...

8 / 23
Rough-paths and non-commutative probability

N



Basics on classical rough paths theory Non-commutative probability theory and rough paths

Assume that we can de�ne the Lévy area x2 =
∫∫

dxdx . Then :

• We can indeed de�ne the integral
∫
f (xu) dxu as∫

f (xu) dxu := lim
∑
tk

{
f (xtk ) (xtk+1

− xtk ) +∇f (xtk ) · x2tk ,tk+1

}
.

•We can extend this de�nition to
∫
f (y) dx for a large class of paths

y , and then solve the equation

dyt = f (yt) dxt .

• We can show that the solution y is a continuous function of
the pair (x , x2), i.e., y = Φ(x , x2) with Φ continuous w.r.t Hölder
topology.
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The procedure can be extended to any Hölder coe�cient γ ∈ (0, 1
3

]
provided one can de�ne the iterated integrals of x :∫

dx ,

∫∫
dxdx ,

∫∫∫
dxdxdx , ...

It applies to stochastic processes in a pathwise way.

Y (ω) = Φ
(
B(ω),B2(ω)

)
,

where Φ is continuous and deterministic.
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Basics on classical rough paths theory Non-commutative probability theory and rough paths

Question : In the rough-paths machinery, what happens if we replace
the γ-Hölder path

x : [0,T ]→ Rn

with a γ-Hölder path
X : [0,T ]→ A,

where A is a non-commutative probability space ?
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Motivation : large random matrices
[Voiculescu]

Consider the sequence of random matrix-valued processes

Mn
t :=

(
B

n,(i ,j)
t

)
1≤i ,j≤n

,

where the
(
Bn,(i ,j)

)
n≥1,1≤i ,j≤n

are independent standard Bm.

Denote Sn
t := 1√

2

(
Mn

t + (Mn
t )∗
)
.

Then, almost surely, for all
t1, . . . , tk ,

1

n
Tr
(
Sn
t1
· · · Sn

tk

) n→∞−−−→ ϕ
(
Xt1 · · ·Xtk

)
,

for a certain path X : R+ → A, where (A, ϕ) is a particular non-
commutative probability space. This process is called the free
Brownian motion.
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De�nition : A non-commutative probability space A is an algebra
of bounded operators (acting on some Hilbert space) endowed with
a trace ϕ, i.e., a linear functional ϕ : A → C such that

ϕ(1) = 1 , ϕ(XY ) = ϕ(YX ) , ϕ(XX ∗) ≥ 0.

"To retain for the sequel" : If X ,Y ∈ A, then XY may be di�erent
from YX .

It is the natural framework to study the asymptotic behaviour of
large random matrices with size tending to in�nity.
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Outline

1 Basics on classical rough paths theory
γ > 1/2 ('Young case')
1

3
< γ ≤ 1

2

2 Non-commutative probability theory and rough paths
Non-commutative processes
Integration
The free Bm case
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Basics on classical rough paths theory Non-commutative probability theory and rough paths

Question : In the rough-paths machinery, what happens if we replace
the γ-Hölder path

x : [0,T ]→ Rn (‖xt − xs‖ ≤ |t − s|γ)

with a γ-Hölder path

X : [0,T ]→ A (‖Xt − Xs‖A ≤ |t − s|γ),

where A is a non-commutative probability space ?

For instance, how can we de�ne∫
P(Xt) · dXt

when P is a polynomial and · refers to the product in A ?
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γ > 1

2
: Young theorem =⇒∫

P(Xt) · dXt := lim
∑
ti

P(Xti ) · (Xti+1
− Xti ).

γ ∈ (1
3
, 1
2

] : corrected Riemann sums∫
P(Xt) · dXt := lim

∑
ti

{
P(Xti ) · (Xti+1

− Xti ) + Cti ,ti+1

}
.

Let us �nd out C in this context...
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As in the �nite-dimensional case, one has (morally)∫ t

s

P(Xu) · dXu

= P(Xs) · (Xt − Xs) +

∫ t

s

∇P(Xs)(Xu − Xs) · dXu

+

∫ t

s

Ys,u · dXu,

with ‖
∫ t

s
Ys,u · dXu‖ ≤ c |t − s|3γ .

Since 3γ > 1, main term :

P(Xs) · (Xt − Xs) +

∫ t

s

∇P(Xs)(Xu − Xs) · dXu.
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A natural de�nition :∫
P(Xt) · dXt ” := ”

lim
∑
tk

{
P(Xtk ) ·(Xtk+1

−Xtk )+

∫ tk+1

tk

∇P(Xtk )(Xu−Xtk ) ·dXu

}
.

But : Remember that in �nite dimension,∫ t

s

∇f (xs)(xu − xs) · dxu = ∂i fj(xs)

∫ t

s

∫ u

s

dx
(i)
v dx

(j)
u .

No longer possible for
∫ t

s
∇P(Xs)(Xu − Xs) · dXu...

=⇒ What can play the role of the Lévy area ?
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For instance, when P(x) = x2,∫ t

s

∇P(Xs)(Xu − Xs) · dXu

= Xs ·
∫ t

s

(Xu − Xs) · dXu +

∫ t

s

(Xu − Xs) · Xs · dXu

= Xs ·
∫ t

s

∫ u

s

dXv · dXu +

∫ t

s

∫ u

s

dXv · Xs · dXu.

=⇒ For s < t, we 'de�ne' the Lévy area X2
s,t as the operator on A

X2
s,t [Y ] =

∫ t

s

∫ u

s

dXv · Y · dXu for Y ∈ A.
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Assume that we can de�ne the Lévy area X2 in the previous sense.

Then, for every polynomial P , we can indeed de�ne the integral∫
P(Xt) · dXt

as the limit of corrected Riemann sums involving X and X2.

19 / 23
Rough-paths and non-commutative probability

N



Basics on classical rough paths theory Non-commutative probability theory and rough paths

Assume that we can de�ne the Lévy area X2 in the previous sense.

Then, for every polynomial P , we can indeed de�ne the integral∫
P(Xt) · dXt

as the limit of corrected Riemann sums involving X and X2.

19 / 23
Rough-paths and non-commutative probability

N



Given X2, we can then de�ne :

• ∫
P(Xt) · dXt · Q(Xt)

for all polynomials P,Q.

• ∫
f (Xt) · dXt · g(Xt)

for a large class of functions f , g : C → C (where f (Xt), g(Xt) are
understood in the functional calculus sense).

• ∫
f (Yt) · dXt · g(Yt)

for a large class of processes Y : [0,T ]→ A.
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With this de�nition in hand, we can solve the equation

dYt = f (Yt) · dXt · g(Yt).

Continuity : Y = Φ(X ,X2), with Φ continuous.

⇒ approximation results.

Application : X free Bm (‖Xt − Xs‖A ≤ c |t − s|1/2)
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3
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Let X : R+ → (A, ϕ) be a free Bm. In brief : to de�ne a stochastic
calculus w.r.t X , it su�ces to be able to give a sense to

X2
s,t [Y ] =

∫ t

s

∫ u

s

dXv · Y · dXu for Y ∈ A. (1)

We can use the results of Biane-Speicher (PTRF 98') to de�ne (1)
as an 'Itô' integral, denoted by X2,Itô =⇒ the 'rough-paths' calculus
based on X2,Itô then coincides with Itô's stochastic calculus w.r.t X .

Another way to de�ne (1) : consider the linear interpolation X n of
X along tni = i

n
(i = 1, . . . , n), and

X2,n
s,t [Y ] =

∫ t

s

∫ u

s

dX n
v · Y · dX n

u (Lebesgue integral).

Then X n → X and X2,n → X2,Strato. Moreover,

X2,Strato
s,t [Y ] = X2,Itô

s,t [Y ] +
1

2
ϕ(Y ) (t − s).
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Open questions

• Lévy area for other non-commutative γ-Hölder processes (with
γ ∈ (1

3
, 1
2

]) : q-Brownian motion, q ∈ (−1, 1).

• extension to non-martingale processes : q-Gaussian processes
([Bo»ejko-Kümmerer-Speicher]), ...

• smaller γ.
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