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Abstract. In this paper we present a quantum Cheshire Cat. In a pre- and post-
selected experiment we find the Cat in one place, and its grin in another. The Cat
is a photon, while the grin is its circular polarization.
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1. Introduction

‘All right’, said the Cat; and this time it vanished quite slowly, beginning with the end
of the tail, and ending with the grin, which remained some time after the rest of it had
gone.

‘Well! I’ve often seen a cat without a grin’, thought Alice, ‘but a grin without a cat!
It’s the most curious thing I ever saw in my life!’

No wonder Alice is surprised. In real life, assuming that cats do indeed grin, the grin is a property
of the cat—it makes no sense to think of a grin without a cat. And this goes for almost all
physical properties. Polarization is a property of photons; it makes no sense to have polarization
without a photon. Yet, as we will show here, in the curious way of quantum mechanics, photon
polarization may exist where there is no photon at all. At least this is the story that quantum
mechanics tells via measurements on a pre- and post-selected ensemble.

2. Cheshire Cats

In the following experiment, the ‘Cat’ is a photon in two possible locations, |L〉 and |R〉. The
‘grin’ corresponds to its circular polarization state. The two basis states for circular polarization
are |+〉 and |−〉. In terms of horizontal and vertical linear polarization states |H〉 and |V 〉,
respectively, they are |+〉 = (|H〉 + i |V 〉) /

√
2 and |−〉 = (|H〉 − i |V 〉) /

√
2.

Suppose that the photon is initially prepared in a state |9〉,

|9〉 =
1

√
2
(i |L〉 + |R〉)|H〉, (1)

which is in a superposition of the two locations |L〉 and |R〉 and horizontally polarized.
A simple way to prepare such a state is to send a horizontally polarized photon toward a
50:50 beam splitter, as depicted in figure 1. The state after the beam splitter is |9〉, with |L〉

now denoting the left arm and |R〉 the right arm; the reflected beam acquires a relative phase
factor i .

We would like to post-select the state |8〉,

|8〉 =
1

√
2
(|L〉|H〉 + |R〉|V 〉). (2)

In other words, we would like to perform a final measurement that gives the answer ‘yes’ with
certainty whenever the system is in the state |8〉 and the answer ‘no’, again with certainty,
whenever the state is orthogonal to |8〉. We will then consider only those cases in which the
answer ‘yes’ is obtained. Such a measurement can be experimentally realized in an optics setup,
as depicted in figure 1. The measuring device comprises a half-wave plate (HWP), a phase
shifter (PS), a beam splitter (BS2), a polarizing beam splitter (PBS) and three photon detectors
(Di ). The HWP is chosen such that |H〉 ↔ |V 〉. The PS is chosen to add a phase factor i on
the beam, BS2 is chosen such that if a photon in the state (|L〉 + i |R〉)/

√
2 impinges upon it,

then it will certainly emerge from the left port (i.e. the detector D2 will certainty not click).
The PBS is chosen such that |H〉 is transmitted and |V 〉 is reflected. Given these choices, if the
state immediately before the HWP (i.e. the state of the photon entering the measuring device)
is |8〉, then D1 will click with certainty. A photon in any state orthogonal to |8〉 will end up
either at detector D2 or at D3. We thus want to consider the experimental arrangement depicted
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Figure 1. Schematic diagram of setup. Various measuring devices will be
inserted into the left and right arms of the interferometer, between the pre- and
post-selection.

in figure 1, which is nothing more than a modified Mach–Zehnder interferometer equilibrated
such that in the absence of the HWP and PS, a photon entering BS1 from the left will certainly
emerge from BS2 toward the right.

We will focus only on those cases in which detector D1 clicks. Inside the interferometer
(i.e. in between the regions denoted by pre- and post-selection in figure 1), the photon is thus
described by the pre-selected state |9〉 and post-selected state |8〉. It is the properties of the
photon in these pre- and post-selected states that is the focus of this paper.

Let us first ask which way the photon went inside the interferometer. We will show that,
given the pre- and post-selection, with certainty the photon went through the left arm. For
suppose that we check the location of the photon by inserting photon detectors into the arms
of the interferometer. Let them be non-demolition detectors in the sense that they do not absorb
the photon and do not alter its polarization. In mathematical terms, these detectors measure
the projection operators 5L = |L〉〈L| and 5R = |R〉〈R|. Suppose first that we insert one such
detector into the right arm. Is it possible to find the photon there? No, it is not. If we find
a photon there, then the state |9 ′

〉 after this measurement will be |9 ′
〉 = |R〉|H〉, which is

orthogonal to the post-selected state |8〉 = (|L〉|H〉 + |R〉|V 〉)/
√

2. Hence the post-selection
could not have succeeded in this case (i.e. detector D1 could not have clicked). Thus the non-
demolition measurement in the right arm never finds the photon there, indicating that the photon
must have gone through the left arm. If instead we perform a non-demolition measurement in
the left arm, given the post-selection, it will always indicate that the photon is there. We can
even perform non-demolition measurements in both arms simultaneously, and they will always
indicate that the photon was in the left arm. The Cat is therefore in the left arm. But can we find
its grin elsewhere?

Suppose instead of the measurements above, we place a polarization detector in the right
arm. Since we know the photon is never in the right arm, surely no ‘grin’ can ever be found
there, and this detector should never click. Surprisingly however, the polarization detector in
the right arm does click. We will discover that there is angular momentum in the right arm.
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Formally, a polarization detector in the right arm can be defined as

σ (R)z =5Rσz, (3)

where

σz = |+〉〈+| − |−〉〈−|. (4)

The observable σ (R)z has three eigenvalues, +1, −1 and 0, corresponding to the eigenstates
|R〉|+〉, |R〉|−〉 and the degenerate subspace spanned by |L〉|+〉 and |L〉|−〉, respectively.

If a photon ends up at D1 then the corresponding measurement of photon position5R never
finds that photon in the right arm. Yet, surprisingly, a measurement of σ (R)z may sometimes find
angular momentum there. Indeed, the conditional probability of σ (R)z yielding the result +1,
given that the photon ends up at D1, is non-zero. Similarly, there is a non-zero conditional
probability that the measurement will find angular momentum −1 in the right arm.

We seem to see what Alice saw—a grin without a cat! We know with certainty that the
photon went through the left arm, yet we find angular momentum in the right arm.

But could this conclusion really be right? It is, ultimately, open to the following criticism.
We never actually simultaneously measured the location and the angular momentum. Indeed,
our conclusions above were reached by measuring location on some photons and angular
momentum on others. The immediate implication is that all we have here is a paradox of
counterfactual reasoning, in a class with other such paradoxes in quantum mechanics, e.g.
[1, 2]. That is, we have made statements about where the photon is, and about where the
angular momentum is, that are paradoxical as long as we don’t actually perform all the relevant
measurements simultaneously. But let us see what actually happens if we try to measure the
location and the angular momentum at the same time.

Suppose that we simultaneously insert detectors for 5R, 5L and σ (R)z . (Since 5R and
σ (R)z commute, their ordering in the right arm does not matter.) What we see now is that
whenever σ (R)z indicates net angular momentum, 5R yields the value 1, indicating that the
photon in fact went through the right arm; whenever σ (R)z does not indicate angular momentum,
5R yields the value 0, indicating that the photon went through the left arm. The paradox
thus evaporates. This is the standard resolution of such counterfactual paradoxes in quantum
mechanics: measurements disturb each other7 therefore the conclusions drawn from separate
measurements do not hold when measurements are performed simultaneously. Hence one is
tempted to conclude that the paradox is nothing other than an optical illusion. In the next section,
however, we will show that there really is a Cheshire Cat and it is not an optical illusion. But
doing so requires a subtler method.

3. Weak measurements

We have reached the central claim of this paper. Ending the analysis with the resolution just
presented, which is the common way of resolving quantum paradoxes, would be premature and
would miss the essence. As discussed above, the disturbance due to intermediate measurements
is a standard rationale for dismissing such paradoxes. However, there is always a trade-off
between disturbance and precision. That is, the disturbance due to measurements can be
limited, at the price of accepting a certain level of imprecision (i.e. errors) in the measurement.

7 Surprisingly, when measured on a pre- and post-selected ensemble, even commuting observables such as 5R

and σ (R)z may disturb each other.
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It is then interesting to see what such limited-disturbance measurements—which are performed
simultaneously—can tell about our paradox. As we will now show, by adopting this strategy we
regain the paradox that was prematurely lost.

We shall first present the specific scheme we have in mind to perform a limited-precision
limited-disturbance measurement. This scheme is very similar to those used in certain optical
beam experiments presented in [3, 4], and can be performed with present-day technology.

The detectors measuring 5L, 5R, σ
(L)
z and σ (R)z would be realized by replacing the

detector D1 with a CCD camera, with the vertical and horizontal displacements of the beam
serving as measurement pointers. For example, a flat glass sheet in the left arm, with its normal
tilted at a small angle above the beam axis, displaces upwards a photon passing through it, by
a small amount that we can define to be one unit δ of displacement. Then observing such an
upward displacement of the beam in the CCD camera will indicate photons passing through the
left arm. Similarly, a measurement of angular momentum could be an optical element producing
a horizontal displacement of the beam in accordance with photon polarization.

The beam will have a characteristic cross-sectional width or ‘waist’ 1. The precision of
the measurement and the degree to which it disturbs the photon depend upon the magnitude of
the displacement δ relative to the width 1. When δ is much larger than 1, the measurement is
precise; we can say with certainty, for a given photon, whether it is displaced or not. At the same
time the disturbance of the photon is large, because the location of the beam becomes entangled
with what is measured. By contrast, 1� δ characterizes the so-called weak measurement
regime, or in other words the regime of limited disturbance. In this regime, any given photon
does not reveal whether the beam has been displaced or not; but repeating the measurement
N times reduces the uncertainty in the beam displacement to approximately 1/

√
N . Thus the

displacement can be detected to any desired accuracy by repeating the measurement sufficiently
many times.

In the context of pre- and post-selection, the above strategy is a specific implementation of
a general measurement strategy known as weak measurements, and the results they yield, the
so-called weak values [5, 6], have already given new insight into many paradoxical situations in
quantum mechanics [7–9].

In more detail, denoting by A any operator measured as above, or in any weak measurement
scheme, it is well known from standard results that the average shift of the pointer (or in the
above the average shift of the beam) will be

〈A〉w =
〈φ|A|ψ〉

〈φ|ψ〉
, (5)

where 〈A〉w is the weak value of A, and where |ψ〉 is the pre-selected state and |φ〉 is the
post-selected state. Again, to repeat, the value 〈A〉w is what the pointer of the measuring device
indicates when A is measured, with a measurement interaction that disturbs the measured system
only weakly, on an ensemble of systems all pre-selected in the state |ψ〉 and post-selected in the
state |φ〉. Moreover 〈A〉w is the effective value of the observable A for any system interacting
with this ensemble, as long as the interaction is weak [10].

Let us now consider the story of our setup, as told by the weak values. The weak values are
as follows:

〈5L〉w =
〈8|5L |9〉

〈8|9〉
= 1, (6)

〈5R〉w =
〈8|5R|9〉

〈8|9〉
= 0, (7)

New Journal of Physics 15 (2013) 113015 (http://www.njp.org/)

http://www.njp.org/


6

〈σ (L)z 〉w =
〈8|σ (L)z |9〉

〈8|9〉
= 0, (8)

〈σ (R)z 〉w =
〈8|σ (R)z |9〉

〈8|9〉
= 1, (9)

where we have defined σ (L)z for the left arm in analogy with σ (R)z for the right arm. Thus the story
as told by the weak values is that the photon is in the left arm (since 〈5L〉w = 1 and 〈5R〉w = 0)
while the angular momentum is in the right arm (since 〈σ (L)z 〉w = 0 and 〈σ (R)z 〉w = 1).

The crucial point is that in principle all of these values apply simultaneously, since all of
the weak measurements can be performed at the same time. In our specific scheme we can only
measure any two at the same time, for example 〈σ (R)z 〉w and 〈5R〉w, which indicate that there is
a grin but no cat in the right arm. Alternatively we can measure any other pair and all results
will be consistent with the paradox. We have finally found our Cheshire Cat.

4. N-electron Cheshire Cat

So far, we have considered an optical realization of the Cheshire Cat. The reason is that the
proposed optical experiment can be implemented with current technology, as we hope it soon
will be. A drawback of this particular optical realization, however, is that it reveals the Cheshire
Cat only as an average over many repetitions of the experiment. In this section we describe an
alternative setup, one which is beyond the reach of current technology, but which reveals the
Cheshire Cat in a stronger sense. In this setup the Cheshire Cat is seen only rarely—yet when it
is seen, it is seen unambiguously and not as an average.

Consider N (distinguishable) electrons, prepared in a superposition of locations |L〉 and
|R〉 in two boxes. All the electrons are polarized along the x-axis. The pre-selected state of the
electrons is

|9N 〉 = 2−N/2 ([|L〉 + |R〉]| ↑x〉)
⊗N . (10)

Let us imagine that we can perform a measurement which allows us to post-select the electrons
in the state

|8N 〉 = 2−N/2 (|L〉| ↑x〉 + |R〉| ↓x〉)
⊗N . (11)

The probability of post-selecting this state is |〈8N |9N 〉|
2
= 4−N , which is exponentially small

in the number of electrons. But when this post-selection succeeds it yields a Cheshire Cat that
can be detected and measured with high precision. Indeed, let the ‘Cat’ itself—its position—be
defined by the mass of the electrons. It will be possible to perform a measurement that is both
weak (i.e. does not appreciably disturb the pre- and post-selected states) and precise (will yield
the number of electrons in each box up to an uncertainty of

√
N , which is insignificant relative

to N when N is large) [6]. Such a measurement, e.g. by means of a gravitational probe, will
find all N electrons (up to uncertainty

√
N ) residing in the left box. Namely, the weak value of∑

5L between the pre- and post-selected states |9N 〉 and |8N 〉, respectively, is〈
N∑
5L

〉
w

=

N∑
〈|L〉〈L|〉w = N , (12)
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while the weak value of
∑
5R is〈

N∑
5R

〉
w

=

N∑
〈|R〉〈R|〉w = 0. (13)

However, the ‘grin’, which here could be the magnetic field in the z-direction, will be equally
measurable, weakly and precisely, by a suitable magnetic probe. The field will be found
emanating from the right box, with field strength proportional to N , again with uncertainty
of

√
N . That is, 〈

∑
σz5R〉w = N and 〈

∑
σz5L〉w = 0. Crucially, in principle all of these

measurements can again be made simultaneously. In keeping with a general analysis [6], this
(technologically impractical) weak value and the previous (optical) weak value are conceptually
equivalent.

5. Conclusions

We have shown that Cheshire Cats have a place in quantum mechanics—physical properties can
be disembodied from the objects they belong to in a pre- and post-selected experiment. Although
here we have only presented one example in full detail, where a photon is disembodied from its
polarization, it should be clear that this effect is quite general—we can separate, for example,
the spin from the charge of an electron, or internal energy of an atom from the atom itself.
Furthermore it is important to realize that it is not just pointers of well-prepared measuring
devices that indicate that the properties are disembodied—any external system which interacts
weakly with the pre- and post-selected system will react accordingly [10].

This therefore opens many intriguing questions, both conceptual and applied ones. First of
all, how will an electron with disembodied charge and mass affect a nearby electron? In an atom
with the internal energy disembodied from the mass, what will the resulting gravitational field
look like? What sort of thermal equilibrium will be achieved by a system whose two degrees of
freedom are separated? Furthermore, when considering more than two degrees of freedom, can
we separate them all from each other? Can photons impart angular momentum to one object
while their radiation pressure is felt by another object?

On the applied side, we may ask whether Cheshire Cats have the potential to be useful in
precision measurements, just as weak measurements have now shown themselves to be useful
as a powerful amplification technique [3, 4, 11–14]. As an example, suppose that we wish to
perform a measurement in which the magnetic moment plays the central role, whilst the charge
causes unwanted disturbances. The question that arises is whether it might be possible to remove
this disturbance, in a post-selected manner, by producing a Cheshire Cat where the charge is
confined to a region of the experiment far from the magnetic moment. We believe that such
potential applications are an interesting possibility that deserve further investigation.
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