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Discuss the Einstein-Podolski-Rosen “paradox”, Bell's inequalities, the
experiments by Aspect and Co, and their implication on the role of
probability in the description of reality.
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Discuss the Einstein-Podolski-Rosen “paradox”, Bell's inequalities, the
experiments by Aspect and Co, and their implication on the role of
probability in the description of reality.

Several possible titles for this talk
o A probabilist's view on Bell's inequalities
@ "“Proofs” that our world is not ‘“classical”

o Why we need “quantum probability”

Claim

No classical (= realistic, non-contextual, local) theory can describe can
correctly describe our world, if quantum mechanics is correct (as all
experiments have confirmed so far). )
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Quantum probability spaces

Definition
A quantum probability space is a pair (A, ¢) consisting of a (Von
Neumann) algebra A and a (normal) state ¢ : A — C.

Ezample (Classical Probability)

A classical probability space is a triple (2, F, P) where

o Q is a set, the sample space, the set of all possible outcomes.
o F CP(Q) is the set of events.
e P:F — [0,1] assign to each event it's probability.

This description/model of random events is consistent with the idea that
randomness is due to a lack of information.
If we knew which w € Q is realized, then the randomness disappears.
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Quantum probability spaces

Ezample (Classical Probability, cont’d)

To a classical probability space (2, F, P) we can associate a quantum
probability space (A, ), take
o A= L>*(Q,F,P), the algebra of bounded measurable fonctions
f:Q — C, called the algebra of random variables or observables.

o ¢: A3 E(f) = [ fdP, which assigns to each random
variable/observable its expected value.

(Q,F, P) and (A, P) are essentially equivalent (by the spectral theorem).

o
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Quantum probability spaces

Exemple (Quantum mechanics)

Let H be a Hilbert space, with a unit vector ¢ (or a density matrix p).
Then the quantum probability space associated to (H, ) (or (H, p) is
given by

o A= B(H), the algebra bounded linear operators X : H — H.

Self-adjoint (or normal) operators can be considered as quantum
random variables or observables.

o ¢ : B(H) > X = o(X) = (¢, X¢) (or p(X) = tr(pX)).

Question

Can the randomness still be explained by a lack of information?
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Ezample: spin—% or polarisation of a photon

H = C2. The most general state vector is of the form

0 ; 0 cos &
= oS — 9gin =|1) = )
1 = cos =|0) + e'?sin - |1) ( oi® sin g ) .

with 6 € [0,7), ¢ € [0,27), |0) = | 1), |1) = | }), and can be visualized as
the point (6, ¢) on the unit sphere (Bloch sphere) in R3, i.e. the vector

cos ¢sinf
sin¢sin 0
cos 6
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Ezample: spin-5 or polarisation of a photon, cont’d

Density matrices are of the form

| + xox + yo, + zo
plx,y,2) = 2Ty T 20

with x,y,z € R, x2 +y2 + 72 < 1, where

,_ (10 /(01 (0 =i /(1 0
“\o1 )% 1 0)% i 0o ) \o -1/

Note that
1/ 1+cos® e @sing\ _ C9S¢S.m
W><¢|_§( e?sinfg 1—cosf ) =p| sindsind
cos 6
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Ezample: spm-% or polarisation of a photon, cont’d

Observables (self-adjoint operators) are of the form

X = al) ([ + bl L) (W,

for a, b € R, 1 a unit vector, 1, orthogonal to ¢ (unique up to a phase).
In an experiment, X takes values a and b, with probabilities

P(X = a) = p(|¥)(¥l) and P(X = b) = o(|L)(¥1])

E.g., for ¢ = (', -4’) the vector state associated to
¥ = cos £10) + e sin % [1), we get

PX =) = |, 8)P = T2 and P(X = 5) = =0

where 1 is the angle between v and v’ on the Bloch sphere.
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